Using machine learning and the GOCI satellite instrument to map fine particulate matter air quality in East Asia

¹School of Engineering and Applied Sciences, Harvard University, Cambridge, Mass., USA ²Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea ³Particulate Matter Research Institute, Samsung Advanced Institute of Technology (SAIT), Suwon, South Korea ⁴Department of Environmental and Safety Engineering, Ajou University, Suwon., South Korea ⁵Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China

Abstract. We use 2011-2019 aerosol optical depth (AOD) observations from the Geostationary Ocean Color Imager (GOCI) instrument over East Asia to infer 24-h daily surface fine particulate matter ($PM_{2.5}$) concentrations at continuous 6x6 km² resolution over eastern China, South Korea, and Japan. This is done with a random forest (RF) algorithm applied to the gap-filled GOCI AODs and other data, including information encoded in GOCI AOD retrieval failure, and trained with PM_{2.5} observations from the three national networks. The predicted 24-h GOCI PM_{2.5} concentrations for sites entirely withheld from training in a ten-fold crossvalidation procedure correlate highly with network observations ($R^2 = 0.89$) with single-value precision of 26-32% depending on country. The area-weighted and population-weighted trends of GOCI PM_{2.5} concentrations for eastern China, South Korea, and Japan show steady 2015-2019 declines consistent with surface networks. Further examination of GOCI PM_{2.5} fields for South Korea identifies hotspots where surface network sites were initially lacking and shows 2015-2019 $PM_{2.5}$ decreases across the country except for flat concentrations in the Seoul metropolitan area.

The random forest algorithm

Step 1: Draw a bootstrap sample Each tree is trained with replacement from the training data **Original Data** ootstrap sample

Step 2: Grow different decision trees for each bootstrap sample

Training data

We train our random forest (RF) machine learning algorithm to predict 24-hr surface PM_{2.5} observed at sites in eastern China, South Korea, and Japan. The RF algorithm predicts surface PM2.5 using:

- layer height, 2m temperature, relative humidity, 10m u/v winds, sea level pressure)
- etc)

sensitive to input data

Step 3: Average tree output to make prediction.

Trees have high variance but on average they are unbiased.

Averaging many trees should give an accurate estimate

Drew C. Pendergrass¹, Shixian Zhai¹, Jhoon Kim^{2,3}, Ja-Ho Koo², Seoyoung Lee², Minah Bae⁴, Soontae Kim⁴, Hong Liao⁵, and Daniel J. Jacob¹

Random forest model accuracy

Below is a scatterplot, color-coded by count, comparing surface observations of 24-h PM_{2.5} to the predicted GOCI PM_{2.5} values in grid cells whose records are entirely withheld from training in a crossvalidation procedure.

When aggregated to annual resolution, RMSE between observed and predicted $PM_{2.5}$ is 3.3 µg m⁻³ corresponding to a relative RMSE of 14%. The prediction captures 96% of observed annual variability. Equivalent 24-h statistics in figure.

Read the AMT paper

National trends in PM_{2.5}

σ

The PM_{2.5} networks show decreasing trends in all three countries and these trends are consistent with the GOCI $PM_{2.5}$ for both areal and population-weighted means. However, the PM₂₅ networks in eastern China and South Korea underestimate the population-weighted means.

This work was funded by the Samsung PM_{2.5} Strategic Research Program and the Harvard-NUIST Joint Laboratory for Air Quality and Climate (JLAQC). GOCI data was provided by Korea Institute of Ocean Science and Technology (KIOST). DCP was funded by a US National Science Foundation Graduate Fellowship.

Contact Drew Pendergrass at <u>pendergrass@g.harvard.edu</u> Read the AMT paper: <u>https://doi.org/10.5194/amt-15-1075-2022</u> Download the GOCI PM_{2.5} data: <u>https://doi.org/10.7910/DVN/0L3IP7</u>

Acknowledgements

Contact information and links

Please use this data!