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The LETKF platform: CHEEREIO
CHEEREIO is a Python- and Shell-based wrapper for the GEOS-Chem CTM, automating the deployment 
of LETKF ensembles for a wide variety of observation types. In this study, we use CHEEREIO 1.3.0. 
CHEEREIO is open-source and freely available to the GEOS-Chem community; to get started, view the 
recording of my tutorial from the 2024 June 10 workshop or visit cheereio.seas.harvard.edu

The LETKF algorithm optimizes a 
state vector 𝒙 of emissions and/or 
concentrations following the linear 
algebra shown at right. In the 
LETKF, 𝑚 ensemble members are 
initialized at time to and the 
forward CTM (GEOS-Chem) is 
run in parallel for a user-specified 
time (termed the assimilation 
window) for each of these 
ensemble members. After the 
runs complete, we construct the 
state vectors for each ensemble 
member; in our case, the state 
vector consists of methane 
emissions scaling factors. We 
localize the calculation within a 
certain radius of the grid cell being 
optimized (1500 km) and optimize 
each cell independently.

Run-in-place: handling long-lived species

Inflation: relaxation to prior spread

Above, flowchart of our LETKF inversion procedure for continuous global methane emissions monitoring. 
We initialize with randomized multiplicative perturbations to bottom-up emissions inventories, applied to 
each of the 32 ensemble members. For assimilation period k, we run GEOS-Chem for the observation 
window (15 days) for each ensemble member, then conduct the LETKF inversion by comparing the 
ensemble sampled with the TROPOMI observation operator to the GOSAT-corrected TROPOMI CH4 over 
the observation window. Posterior emission scaling factors and concentrations are then inflated to reflect 
the prior spread using the RTPS procedure (above). The posterior emission estimates and inflated 
concentrations then become the prior for the k+1 assimilation period, beginning 5 days after the prior. 

Prior emissions: the wetlands challenge

Observations: GOSAT-corrected TROPOMI
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When ingesting the GOSAT-adjusted TROPOMI observations into the LETKF, we aggregate the data into 
“super-observations” by averaging onto the 2.0°×2.5° GEOS-Chem grid. To model the reduction in 
observational error variance due to averaging and obtain the super-observation error standard deviation 
σ!"#$%, we follow a two-component error variance equation which separates contributions due to forward 
model transport error variance (𝜎&%'(!#)%&* ) from satellite error variance for a single retrieval (𝜎+*): 
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Here 𝑛 is the number of observations aggregated into a super-observation and 𝑐 is the error correlation 
between the individual retrievals within a super-observation. Error correlation is expected due to shared 
retrieval parameters such as surface reflectance. Chen et al. (2023) used the residual error method to 
empirically determine the parameters for TROPOMI methane and obtained 𝜎1 = 17 ppb, transport error 
𝜎&%'(!#)%& = 6.1 ppb, and error correlation 𝑐 = 0.28; we use these values in this study 

Prior emissions from oil, gas, and coal are from the 2010-19 Global Fuel Exploitation Inventory (GFEI) 
version 2.0 and other anthropogenic emissions are from the 2012 EDGARv6 inventory. Both inventories 
are overwritten for the continental US, Mexico, and Canada by national inventories. Anthropogenic 
emissions are assumed to be aseasonal, except for manure management and rice for which we apply 
seasonal scaling factors. For natural emissions, fires are from the Global Fire Emissions Database 
(GFED4), termites from Fung et al. (1991), and geological seeps from Etiope et al. (2019). Methane is 
primarily lost due to oxidation by OH, represented by fields archived from a GEOS-Chem full-chemistry 
simulation scaled so that methane’s tropospheric lifetime due to loss to OH matches the best estimate 
derived from methyl chloroform observations.`

For wetland emissions, we run two different inversions for two separate inventories. We first use 
the high-performance subset of WetCHARTs v1.3.1, but this inventory underestimates the global 
seasonal cycle of methane as observed by the GOSAT-corrected TROPOMI product (East et al., 2024). 
For comparison, we use the LPJ-wsl dynamic global vegetation model driven by MERRA-2 which better 
matches observed global methane seasonality (East et al., 2024). The above figure shows total 
methane emissions (anthropogenic and natural) for September 2018 in the top row, with LPJ-MERRA2 
wetlands at left and WETCHARTS at right. Total emissions for September are inset. The difference in the 
wetland inventories (LPJ minus WETCHARTS) for this month is shown in the bottom panel.

We modify the treatment of the LETKF assimilation window using the run-in-place (RIP) method (Kalnay 
and Yang, 2010). For the Gaussian and linearity assumptions of an ensemble Kalman filter algorithm to 
be satisfied, a short assimilation window must be used, but the estimation of parameters such as 
methane emissions benefit from a longer observational record. With RIP, we calculate the LETKF 
assimilation update using a long period of observations (15 days, called the observation window), but 
then advance the assimilation window forward for a shorter period (5 days, the assimilation window). RIP 
thus maintains linear growth in posterior perturbations and allows the system more time to correct 
assimilation errors. Importantly, after advancing the assimilation window forward, we do not reinitialize 
the ensemble for new runs. Instead, the assimilated state of the previous observation window becomes 
the initial background state of the next assimilation window, as shown in the below figure.

Workflow for continuous monitoring

Because ensemble-based methods undersample the possibility space of the data assimilation problem, 
they suffer from shrinking dispersion between ensemble members which can lead to vanishingly small 
prior error estimation and thus for later observations to be discarded; an error inflation method is 
necessary to prevent ensemble collapse. Following Bisht et al. (2023), we use the Relaxation to Prior 
Spread (RTPS) inflation method. RTPS inflates the standard deviation 𝝈𝒂 of the analysis perturbation 
matrix 𝑿𝒂 (see “The LETKF cycle” diagram in left column) such that it partially reflects the standard 
deviation 𝝈𝒃 of the background perturbation matrix 𝑿𝒃:
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Here 𝜶𝐑𝐓𝐏𝐒  is a parameter between 0 and 1 which represents the weighted contribution of the 
background standard deviation 𝝈𝒃  in inflating the analysis ensemble to obtain the final analysis 
perturbation matrix 𝑿𝐢𝐧𝐟𝐥𝒂 . We take 𝜶𝐑𝐓𝐏𝐒  to be 0.7. We additionally apply RTPS to 3D methane 
concentrations in the ensemble members even though we do not formally include concentrations in the 
state vector; this is because we find inflating emissions alone is not necessarily enough to prevent the 
convergence of concentrations across ensemble members in the short term.

TROPOMI retrieves dry-column methane mixing ratios (𝑋?@') at 5.5x7 km2 nadir pixel resolution at 13:30 
local solar time via a full-physics algorithm. Balasus et al. (2023) trained a machine learning algorithm to 
bias-correct TROPOMI 𝑋?@' according to observations from the GOSAT instrument, which was launched 
in 2009. We filter out observations with a quality assurance value of 0.5 or lower and also remove 
retrievals over coastlines and oceans, but otherwise keep all GOSAT-corrected TROPOMI 𝑋?@'retrievals, 
improving coverage of key source areas (Amazon, Congo, southeast Asia). The below figure shows the 
mean GOSAT-corrected TROPOMI 𝑋?@'retrievals for September 2018 as well as the number of 
observations in each grid cell.

The Localized Ensemble Transform Kalman Filter (LETKF)  is a Bayesian algorithm that can optimize 
emissions or concentrations of chemical species, weighting observations and prior knowledge (e.g. 
inventories) by relevant uncertainties. LETKF avoids the need for the adjoint of the chemical transport 
model (CTM) because it is powered by an ensemble of CTM simulations which capture the nonlinearity of 
the system. Each ensemble member is initialized with random perturbations applied to emissions of 
interest, capturing prior uncertainty. The CTM enables comparison of the ensemble with observations, 
allowing the prior to be updated and the simulation/LETKF cycle to repeat, as shown in the above figure.
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Lognormal errors in LETKF
Lognormal errors better capture the upper tail of the methane emissions distribution than does a 
Gaussian; by forbidding negative values, it also prevents unphysical negative emissions in analytical 
inversions. However, imposing a lognormal distribution across ensemble members violates the 
assumptions of the LETKF equations. We solve this problem by sampling methane emissions scaling 
factors for each ensemble member according to a lognormal distribution centered on 1 (prior emissions 
inventory) and run GEOS-Chem for each ensemble member with these scaling factors applied. When it is 
time for the LETKF calculation, we apply a logarithmic transform to the methane scaling factor 
distributions and thus obtain a normal distribution (centered on 0) for the construction of the background 
perturbation matrix 𝑿𝒃. We perform the LETKF and once it is complete we apply an exponential to 
transform back to the original lognormal distribution, which is then used to evolve GEOS-Chem once 
more. 
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CTM simulations LETKF

The above figure shows the importance of prior wetland inventories in obtaining a seasonally-robust 
simulation that can reproduce observational trends. Here we initialize GEOS-Chem to match TROPOMI 
global means for May 2018, then run for six months with either LPJ-MERRA2 wetlands (left) or 
WETCHARTS (right). Because LPJ-MERRA2 has more wetland emissions in northern hemisphere 
summer and autumn, it produces a globally unbiased estimate of global methane (regional biases remain 
pronounced), while the WETCHARTS simulation is biased low nearly everywhere. These different 
methane budgets can affect the ability for LETKF to offer continuous methane monitoring, as discussed 
in the rightmost column.

We create two thirty-two member ensembles of GEOS-Chem within the CHEEREIO environment, one 
for each wetland prior, following the architecture in the “Workflow for Continuous Monitoring” section. For 
localizations, we weight observations according to their distance from the grid cell in question according 
to the Gaspari-Cohn function, a piecewise polynomial resembling a bell curve with a value of 1 at the grid 
cell and 0 at 1500 km away, which leads to smoother assimilation results. In line with analytical 
inversions of methane emissions, we additionally apply a regularization factor of 𝛾 = 0.1	to effectively 
increase observational errors and avoid overfit to TROPOMI. Planned simulations for this work (2018 
through 2024) are currently running. Only the first year (June 2018 through May 2019) was available at 
the time of this presentation. Results shown below are based on this first year of results. 

The above figure compares simulated 
methane columns from GEOS-Chem with 
TROPOMI observations for January 2019 
through May 2019. Top row shows the 
simulation with the LPJ-MERRA2 wetland 
prior and the bottom with the Wetcharts 
prior; posterior simulations are shown in the 
right column as compared with the priors in 
the left, with global biases relative to 
TROPOMI inset. Local biases are reduced 
by assimilation in both cases (South 
America in LPJ) but global bias is only 
improved in the WETCHARTS simulation, 
which has a globally imbalanced methane 
budget with the methyl chloroform-adjusted 
OH sink.
The figure at left shows, in the top panel, 
global mean dry-column methane mixing 
ratios for TROPOMI (green), the LPJ 
simulation (blue), and the Wetcharts 
simulation (red). Ensemble mean and 
standard deviation are shown in solid lines 
and envelopes, with priors shown by dotted

lines. After a year of runtime, both simulations approach TROPOMI global mean. Despite converging 
concentrations, emissions (bottom panel) show different temporal patterns as the Wetcharts posterior 
shows high methane emissions through winter, apparently to “catch up” with bias introduced from the 
budget imbalance. For our full results, we will likely discard the first year of simulation as a “burn-in” period, 
a practice common in CO2 inversions. The below figure shows posterior methane emissions for the 
January 2019 through May 2019 period. Both LPJ-MERRA2 and Wetcharts show remarkable agreement 
on total methane emissions for this period (annualized: 521 Tg, slightly lower than other budgets but 
methane emissions peak in the second half of the year due to wetland activity; East et al., 2024). 

Abstract. Methane is a strong greenhouse gas, contributing 0.6 °C of warming from the pre-
industrial baseline. Because of the potency and short lifetime of methane, decreasing methane 
emissions is an effective way to mitigate climate change in the near-term while also achieving air 
quality co-benefits from reduced tropospheric ozone. Bottom-up methane emissions inventories link 
emissions to processes, providing information necessary for mitigation strategies, but inventory 
construction takes several years and is subject to error. Methane can be detected by satellites 
through backscatter of solar radiation, including by the TROPOMI instrument, which can then be 
used to correct inventories via a Bayesian synthesis approach. Global top-down methane emissions 
estimates with high temporal resolution are desirable because of the variability of methane 
emissions in time, such as from intermittent point sources or from seasonally-varying sources 
including wetlands and rice; both may be incorrectly specified in bottom-up inventories but cannot be 
corrected with annual-scale inversions. In our preliminary results, we use the localized ensemble 
transform Kalman filter (LETKF) algorithm to demonstrate that TROPOMI observations can be used 
to estimate global methane emissions at 2°×2.5° degrees spatial resolution and 5-day temporal 
resolution. To examine the importance of methane seasonality on our inversion, we use two different 
inventories for wetland emissions with divergent spatial and temporal patterns. We evaluate the 
quality of the LETKF emissions adjustments and discuss the emissions trends inferred by the 
inversion, as well as the role of wetland seasonality in the interpretation of top-down emissions 
estimates at high temporal resolution.


