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CHEEREIO data assimilation platform
CHEEREIO is a Python- and Shell-based wrapper for the GEOS-Chem CTM, automating the deployment 
of LETKF ensembles for a wide variety of observation types. In this study, we use CHEEREIO 1.3.0. 
CHEEREIO is open-source and freely available at cheereio.seas.harvard.edu.

Emissions and TROPOMI observations 
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Prior emissions from oil, gas, and coal are from GFEIv2 and other anthropogenic emissions are from 
EDGARv6; both are overwritten over the US, Mexico, and Canada by national inventories. 
Anthropogenic emissions are assumed to be aseasonal, except for manure management and rice for 
which we apply seasonal scaling factors. Fires are from GFED4, termites from Fung et al. (1991), and 
geological seeps from Etiope et al. (2019). OH is prescribed by fields archived from a GEOS-Chem full-
chemistry simulation scaled to match methyl chloroform observations. For wetland emissions, we run 
different inversions for two separate inventories. We use the high-performance subset of 
WetCHARTs v1.3.1 and compare it to the LPJ-wsl dynamic global vegetation model driven by MERRA-2.

Run-in-place (RIP) assimilations recycle observations so that methane emissions estimates 
benefit from a longer observational record. With RIP, we calculate the LETKF assimilation update using a 
long period of observations (15 days, called the observation window), but then advance the assimilation 
window forward for a shorter period (5 days, the assimilation window), as shown below.

Workflow for continuous monitoring

Relaxation to prior spread inflation helps counter shrinking dispersion between ensemble 
members which can lead to vanishingly small prior error estimation and thus for later observations to be 
discarded. Following Bisht et al. (2023), we use the Relaxation to Prior Spread (RTPS) inflation method, 
which inflates the posterior ensemble standard deviation to a fixed percentage of the prior (0.7 here).

The Localized Ensemble Transform Kalman Filter (LETKF)  is a Bayesian algorithm that can optimize 
emissions or concentrations of chemical species; LETKF uses an ensemble of chemical transport model 
(CTM) simulations, each driven by randomly perturbed emissions such that the CTMs represents the 
spread of atmospheric states that could result given emissions uncertainty. LETKF compares this suite of 
artificial atmospheres to real observations and uses the difference to calculate an update to the prior.
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LETKF modifications for methane
Lognormal errors better capture the methane emissions distribution and prevent unphysical 
negative emissions, but imposing a lognormal distribution across ensemble members violates the LETKF 
equations. We solve this problem by sampling methane emissions scaling factors for each ensemble 
member according to a lognormal distribution centered on 1 (prior emissions inventory) and run GEOS-
Chem, then for LETKF calculations we apply a log transform, then exponentiate back for simulations. 
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Abstract. We use 2018-2023 bias-corrected TROPOMI satellite observations of atmospheric 
methane to quantify global methane emissions at 2°×2.5° resolution and five-day temporal 
resolution with a localized ensemble transform Kalman filter (LETKF) inversion. From the inversion 
we derive optimal posterior estimates of emissions from anthropogenic and natural sources along 
with their seasonalities and year-to-year evolution over the TROPOMI period. The sensitivity of the 
inversion to wetland assumptions is evaluated by using two alternative wetland inventories 
(WetCHARTS and LPJ-wsl) as prior estimates. Our best posterior estimate of global emissions (557 
Tg a-1 for 2023) closes the global methane budget imbalance with a seasonal cycle peaking in 
August and September. Consistent with previous studies, we attribute the 2020 methane surge to a 
14 Tg a-1 increase in emissions from sub-Saharan Africa. We also find that the elevated emissions in 
the region persist into later years. We find a strong seasonal cycle in oil and gas emissions from the 
Permian basin, which may be due to equipment weatherization practices. 
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We use TROPOMI observations bias-
corrected with GOSAT (Balasus et al., 2023) 
and aggregate the data into “super-
observations” by averaging onto the 2.0°×2.5° 
GEOS-Chem grid. To model error, we follow a 
two-component error variance equation which 
separates contributions due to forward model 
transport error variance (𝜎!"#$%&'"!( ) from satellite 
error variance for a single retrieval (𝜎)(): 
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Here 𝑛 is the number of observations 
aggregated and 𝑐 is the error correlation 
between the retrievals averaged (e.g. due to 
shared surface features). We use the residual 
error method to obtain 𝜎1 = 17 ppb, 𝜎!"#$%&'"! =
6.1 ppb, and 𝑐 = 0.28.

Assimilation evaluation

We built a near-real-time system for estimating global methane 
emissions with TROPOMI data, then applied it to 2018-2023 to 
study rapidly increasing atmospheric methane concentrations. 

We attribute the 2020 methane surge to a 14 Tg a-1 increase in 
emissions from sub-Saharan Africa which has persisted.

We find strong seasonality in methane emissions, peaking in late 
summer, but also unexpected seasonality in the Permian basin.

Below we show simulated methane columns from GEOS-Chem with GOSAT-corrected TROPOMI 
observations for June 2018 through December 2023. Top row shows the simulation with the LPJ-
MERRA2 wetland prior and the bottom with the Wetcharts prior; posterior simulations are shown in the 
right column as compared with the priors in the left, with global biases relative to TROPOMI inset. Here 
we only show results for simulations optimizing emissions only; simultaneous optimization of 
concentration and emissions yields similar bias reductions.

Methane trends and seasonality

Below we show relative growth in global annual mean methane concentrations over the study period 
including in NOAA mean concentrations from marine sites. Prior simulations cannot reproduce the 
observed concentration trends because of an imbalance between sources and sinks specified in the 
model, but posterior simulations have similar annual emissions (559 Tg a-1 and 555 Tg a-1 for 
WetCHARTs and LPJ-MERRA2 respectively in 2023) leading to close agreement with TROPOMI and 
NOAA datasets. Our best estimate of 543 Tg a-1 for 2019 is slightly lower than the 556-570 Tg a-1 
calculated for 2019 by Qu et al. (2021) and 550–594 Tg a-1 from a large array of top-down inversions 
for 2008-2017 (Saunois et al., 2020).

WetCHARTs and LPJ-MERRA2 posterior emissions differ in projected seasonality (two posteriors shown; 
one simultaneously optimizes concentrations and emissions, the other just emissions). In northern 
hemisphere winter, both posterior solutions project higher methane emissions than suggested in the prior 
and adjust peak emissions from a consistent high across northern hemisphere summer to a sharper peak 
in late summer and early autumn. The WetCHARTS posterior suggests sharper late summer peaks and 
higher emissions through autumn and northern hemisphere winter. Seasonality is similar for other years.
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Below we compares our 2019-2023 results for the Permian Basin in Texas and New Mexico to a 
0.25°×0.3125° weekly analytical inversion (Varon et al., in prep) where we regrid our results and sample 
at the same downscaled Permian grid cells as in the higher resolution analysis.  Despite substantial 
methodological differences, we can reproduce the same pronounced seasonal cycle in Permian 
emissions, though our results show minimal week-to-week variability in contrast to Varon et al. (in 
prep). Stakeholders think this pattern could be due to weatherization of equipment.

Below we show regional trends in annual posterior emissions. We attribute the 2020 methane surge to a 
14 Tg a-1 increase in emissions from sub-Saharan Africa, as in previous studies (Qu et al., 2022; Feng et 
al., 2023), and we find that the elevated emissions persist into later years. Because of the 2020-22 
methane surge, overall 2019-23 trends are weak in the study period. Regions like Central Asia, North 
Africa and the Middle East, and the continental US all show a substantial surge and decline in emissions.
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Below we compare global mean methane dry-column methane mixing ratios (XCH4) from TROPOMI and 
from GEOS-Chem prior (dashed) and CHEEREIO posterior (solid) runs. A complication of our analysis is 
that no TROPOMI operational data is available for a monthlong period near August in both 2022 and 
2023, the period of highest emissions. In our posterior emissions, we find sharper northern hemisphere 
peaks in 2022 and 2023 after the missing observational period ends, because LETKF persists July 
emissions through the period of missing data and increases emissions suddenly when observations 
resume.


