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Abstract. We use 2019 TROPOMI satellite observations of atmospheric methane in an analytical inversion to
quantify methane emissions from the Middle East and North Africa at up to ∼ 25 km× 25 km resolution, using
spatially allocated national United Nations Framework Convention on Climate Change (UNFCCC) reports as
prior estimates for the fuel sector. Our resulting best estimate of anthropogenic emissions for the region is 35 %
higher than the prior bottom-up inventories (+103 % for gas, +53 % for waste, +49 % for livestock, −14 % for
oil) with large variability across countries. Oil and gas account for 38 % of total anthropogenic emissions in the
region. TROPOMI observations can effectively optimize and separate national emissions by sector for most of
the 23 countries in the region, with 6 countries accounting for most of total anthropogenic emissions includ-
ing Iran (5.3 (5.0–5.5) Tg a−1; best estimate and uncertainty range), Turkmenistan (4.4 (2.8–5.1) Tg a−1), Saudi
Arabia (4.3 (2.4–6.0) Tg a−1), Algeria (3.5 (2.4–4.4) Tg a−1), Egypt (3.4 (2.5–4.0) Tg a−1), and Turkey (3.0
(2.0–4.1) Tg a−1). Most oil–gas emissions are from the production (upstream) subsector, but Iran, Turkmenistan,
and Saudi Arabia have large gas emissions from transmission and distribution subsectors. We identify a high
number of annual oil–gas emission hotspots in Turkmenistan, Algeria, and Oman and offshore in the Persian
Gulf. We show that oil–gas methane emissions for individual countries are not related to production, invalidating
a basic premise in the construction of activity-based bottom-up inventories. Instead, local infrastructure and man-
agement practices appear to be key drivers of oil–gas emissions, emphasizing the need for including top-down
information from atmospheric observations in the construction of oil–gas emission inventories. We examined the
methane intensity, defined as the upstream oil–gas emission per unit of methane gas produced, as a measure of
the potential for decreasing emissions from the oil–gas sector and using as reference the 0.2 % target set by the
industry. We find that the methane intensity in most countries is considerably higher than this target, reflecting
leaky infrastructure combined with deliberate venting or incomplete flaring of gas. However, we also find that
Kuwait, Saudi Arabia, and Qatar meet the industry target and thus show that the target is achievable through
the capture of associated gas, modern infrastructure, and the concentration of operations. Decreasing methane
intensities across the Middle East and North Africa to 0.2 % would achieve a 90 % decrease in oil–gas upstream

Published by Copernicus Publications on behalf of the European Geosciences Union.



5946 Z. Chen et al.: Satellite quantification of methane emissions and oil–gas methane intensities

emissions and a 26 % decrease in total anthropogenic methane emissions in the region, making a significant
contribution toward the Global Methane Pledge.

1 Introduction

Methane (CH4) is a potent greenhouse gas with a relatively
short atmospheric lifetime of 9.1± 0.9 years (Prather et al.,
2012; Szopa et al., 2021) and is a precursor of tropospheric
ozone (Fiore et al., 2002). Decreasing methane emissions
is a powerful lever to mitigate near-term warming (Szopa
et al., 2021) and thereby give the world time to “bend the
curve” on carbon dioxide (CO2) emissions and removal, as
well as to adapt to climate change. Anthropogenic emissions
of methane are from many sectors including the oil and gas
supply chain, coal mining, livestock, rice cultivation, land-
fills, and wastewater treatment. Natural emissions are mainly
from wetlands. Improving knowledge of methane emissions
is urgently needed for enforcing the enhanced transparency
framework of the Paris Agreement and the 2023 objectives
of the Global Methane Pledge (Climate and Clean air Coali-
tion, 2021). The 194 Parties to the Paris Agreement (individ-
ual nations plus the European Union) of the United Nations
Framework Convention on Climate Change (UNFCCC) have
each submitted their periodic nationally determined contri-
butions (NDCs), indicating how much they expect to reduce
their greenhouse gas emissions by specific years, most of-
ten by 2030. Emission inventories reported by parties un-
der the Paris Agreement typically rely on bottom-up esti-
mates using activity data and emission factors that are ex-
trapolated from limited information and may have large er-
rors (Kirschke et al., 2013; Saunois et al., 2020; Nisbet et al.,
2020). Top-down methods involving the inversion of atmo-
spheric methane observations can reduce these uncertainties
through Bayesian synthesis (Houweling et al., 2017). Here
we use an inverse analysis of 2019 satellite observations of
atmospheric methane to quantify emissions by sector over
the Middle East and North Africa region including 23 indi-
vidual countries.

The Middle East and North Africa is a compelling target
region for reducing methane emissions because of intense oil
and gas production activity, contributing 32 % to global oil
production and 24 % to global gas production in 2019 (EIA,
2020). The oil–gas sector presents the largest low-cost miti-
gation potential for methane emissions with technically fea-
sible solutions (Nisbet et al., 2020). National inventories re-
ported to the UNFCCC give a total oil–gas methane emis-
sion from the Middle East and North Africa of 13.0 Tg a−1

for 2019, representing 27 % of global emissions from that
sector (Scarpelli et al., 2022). However, emission uncertain-
ties are particularly high for the oil–gas sector because of the
large number of point sources with widely variable operat-
ing conditions. Bottom-up estimates for individual countries

may vary by more than an order of magnitude (Scarpelli et
al., 2022). Satellite observations have detected exceedingly
large point sources from oil and gas fields in the Middle East
and North Africa (Varon et al., 2019, 2021; Guanter et al.,
2021; Lauvaux et al., 2022; Irakulis-Loitxate et al., 2022a,
2022b; Sánchez-García et al., 2022; Ehret et al., 2022), re-
vealing poor maintenance practices and equipment failures
that would likely not be accounted for in the bottom-up in-
ventories.

Top-down emission estimates using atmospheric methane
observations offer an independent check on bottom-up inven-
tories. They generally involve an inverse analysis in which
an atmospheric transport model is used to relate emissions
to atmospheric concentrations, equipped with prior infor-
mation from a spatially resolved emission inventory. Com-
paring the predicted atmospheric concentrations from the
prior emission inventory to the observations enables cor-
rection of the inventory by Bayesian synthesis (Brasseur
and Jacob, 2017). Satellite observations in the shortwave in-
frared (SWIR) are particularly attractive for top-down anal-
yses due to their global coverage and sensitivity down to the
surface (Jacob et al., 2016, 2022). Inversions with satellite
observations from the Greenhouse Gases Observing Satel-
lite (GOSAT) for 2009–present (Qu et al., 2021; Deng et
al., 2022) have enabled an assessment of national emissions
across the globe in support of the Paris Agreement’s global-
stocktake process (Worden et al., 2022), the first of which is
to be completed in 2023. But the GOSAT observations are
sparse, separated by about 250 km, which limits the spatial
resolution that can be achieved and introduces errors in at-
tributing emissions to countries and sectors. The TROPO-
spheric Monitoring Instrument (TROPOMI) satellite instru-
ment (2018–present) provides global continuous daily map-
ping of atmospheric methane at 7 km× 5.5 km nadir resolu-
tion. It has a unique capability for high-resolution quantifi-
cation of national emissions and effectively attributing emis-
sions to sectors. This capability has recently been demon-
strated for North America (Zhang et al., 2020; Shen et al.,
2021, 2022) and East Asia (Chen et al., 2022; Liang et al.,
2022).

Here we use TROPOMI observations for 2019 with
the GEOS-Chem (Goddard Earth Observing System) at-
mospheric transport model in an analytical inversion in-
cluding closed-form error characterization to infer methane
emissions from the Middle East and North Africa (−20–
70◦ E, 12–44◦ N) at up to the native 0.25◦× 0.3125◦ (∼
25 km× 25 km) resolution of GEOS-Chem. This allows us
to quantify emissions by sector for 23 individual countries
across the region and compare to the UNFCCC-reported in-
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ventories used as prior estimates in our inversion. We infer
methane intensities (emissions per unit gas production) from
the oil–gas sector in different countries and identify high-
intensity countries with the potential to greatly reduce emis-
sions.

2 Data and methods

2.1 TROPOMI satellite observations

TROPOMI is on board the polar sun-synchronous Sentinel-5
Precursor satellite with a ∼ 13:30 local overpass time. Dry-
column methane mixing ratios (XCH4 ) are retrieved with a
full-physics algorithm in the 2.3 µm absorption band with a
global success rate of 3 % over land limited by cloud cover
and by dark or heterogeneous surfaces (Lorente et al., 2021).
TROPOMI provides full global daily coverage with a spa-
tial resolution of 7 km× 5.5 km in the nadir (7 km× 7 km be-
fore August 2019) (Hu et al., 2016). We use the TROPOMI
methane product version 2.02 from the Netherlands Institute
for Space Research (Lorente et al., 2021) for 2019 excluding
low-quality retrievals (“qa_value”< 0.5 and snow-covered
scenes identified with a blended albedo exceeding 0.8) (Chen
et al., 2022).

The TROPOMI XCH4 data can be affected by retrieval ar-
tifacts correlated with SWIR surface albedo also retrieved
by TROPOMI (Barré et al., 2021). Here we apply a bias
correction to TROPOMI retrievals over the Middle East
and North Africa by calibrating to GOSAT observations.
GOSAT has higher spectral resolution than TROPOMI and
retrieves XCH4 in the 1.65 µm band using the CO2 proxy
retrieval method, which is less subject to retrieval arti-
facts (Parker et al., 2019). We find that the differences be-
tween TROPOMI and GOSAT retrievals averaged on the
0.25◦×0.3125◦ GEOS-Chem grid have a linear dependence
on SWIR surface albedo (Fig. 1), and we apply the linear
regression as a correction to the TROPOMI data. The correc-
tion includes a non-zero intercept of 10.3 ppb, but this is of
no consequence because the same correction is applied to the
initial and boundary conditions for the inversion. The mean
TROPOMI–GOSAT difference on the 0.25◦× 0.3125◦ grid
is −0.01± 9.3 ppb after this correction, where the standard
deviation refers to the spatial variability in the annually aver-
aged differences. This standard deviation, which is a measure
of variable bias, is below the threshold requirement of 10 ppb
by Buchwitz et al. (2015) for satellite data to be effective in
regional inversions.

Figure 2 shows the spatial distribution of the corrected
TROPOMI observations and the number of successful re-
trievals for 2019. The total number of TROPOMI retrievals
over our inversion domain for 2019 is 30 366 339, evenly dis-
tributed across seasons. We average the TROPOMI retrievals
(includingXCH4 , prior vertical profiles, and averaging kernel
vectors) over each GEOS-Chem 0.25◦×0.3125◦ grid cell and

Figure 1. TROPOMI–GOSAT difference in retrieved dry-column
methane mixing ratio (XCH4 ) as a function of the shortwave in-
frared (SWIR) surface albedo in the 2305–2385 nm range also re-
trieved by TROPOMI. Individual data points represent daily dif-
ferences in collocated observations averaged on the GEOS-Chem
0.25◦×0.3125◦ grid over the Middle East and North Africa (−20–
70◦ E, 12–44◦ N) in 2019. The solid black line is the ordinary linear
regression with coefficients given inset. The dashed line indicates
zero difference between TROPOMI and GOSAT XCH4 .

each hour to yield m= 3 714 062 super-observations for use
in the inversion.

2.2 Prior emissions

Figure 3 shows the distribution of prior emissions by sector
over the inversion domain, Table 1 lists the domain-wide to-
tals, and Table 2 lists totals for individual countries. Oil, gas,
and coal emissions are from the Global Fuel Exploitation In-
ventory (GFEIv2), which uses detailed infrastructure data to
spatially allocate on a 0.1◦×0.1◦ grid the national inventories
from individual countries reported to the UNFCCC includ-
ing offshore emissions (Scarpelli et al., 2022). Iraq, Libya,
and Oman have not reported their emissions to the UNFCCC
since 2000 (Table S1 in the Supplement), and for those coun-
tries GFEIv2 uses recommended emission factors from the
Intergovernmental Panel on Climate Change (IPCC, 2006)
Tier 1 method and U.S. Energy Information Administration
production statistics (EIA, 2020) to infer national emissions.
For other anthropogenic sectors (livestock, landfills, wastew-
ater treatment, rice, and other minor sources), prior emissions
are from the Emissions Database for Global Atmospheric Re-
search (EDGARv6) inventory for 2018 (Crippa et al., 2021).

Wetland emissions are 2019 monthly means at 0.5◦×0.5◦

resolution from the nine high-performance members of the
WetCHARTS v1.3.1 inventory ensemble, so chosen because
they fit best to a global GOSAT inversion (Ma et al., 2021).
Other natural sources include open-fire emissions from the
Global Fire Emissions Database version 4s (GFED4s) (van
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Figure 2. Atmospheric methane concentrations and emissions for the Middle East and North Africa. (a, b) The mean 2019 TROPOMI
observations of the dry-column methane mixing ratio (XCH4 ) and the total number of retrievals for that year on the 0.25◦× 0.3125◦ native
grid of the inversion. (c, d) The prior and posterior emissions. Prior emissions are separated by sector in Fig. 3. Blank areas have emissions
lower than 1× 10−12 kg m−2 s−1.

der Werf et al., 2017), termite emissions from Fung et
al. (1991), and geological seepage emissions from Etiope
et al. (2019) with global scaling to 2 Tg a−1 (Hmiel et al.,
2021). Termite emissions in the region are larger than wet-
lands (0.51 Tg a−1 versus 0.42 Tg a−1) and are mostly in Iran
and Niger.

2.3 GEOS-Chem forward model

We use the nested version of the GEOS-
Chem 13.0.0 chemical transport model
(https://doi.org/10.5281/zenodo.4618180) as a forward
model for the inversion to relate methane emissions to
atmospheric concentrations through atmospheric transport.
GEOS-Chem is driven by meteorological fields from the
GEOS FP (Forward Processing) analyses (Lucchesi, 2018) at
0.25◦× 0.3125◦ resolution. We use that native resolution in
GEOS-Chem over the Middle East and North Africa domain
(−20–70◦ E, 12–44◦ N) with dynamic boundary conditions
from a global model simulation using posterior methane
emissions optimized from TROPOMI data following Shen et
al. (2022). We further optimize the boundary conditions for
each quadrant (north, south, west, east) and for each season
as part of the inversion. Initial conditions on 1 January 2019
are set to match the mean TROPOMI column mixing ratios
in the region following Qu et al. (2021). In this manner,
differences between the forward model and observations can
be attributed to errors in 2019 emissions rather than to errors
in initial conditions.

2.4 Analytical inversion procedure

We perform the inversion analysis mostly following Chen
et al. (2022). We use the Gaussian mixture model (GMM)
of Turner and Jacob (2015) to define the state vector x of
the inversion as emission patterns that TROPOMI observa-
tions can effectively constrain, aiming to the preserve na-
tive (0.25◦×0.3125◦) resolution for strong localized sources
while smoothing the solution in regions with weak uniform
emissions as provided by prior knowledge. In the GMM, sim-
ilarity vectors defining proximity and commonality in sec-
toral emissions (as defined by the prior estimate) are used
to construct Gaussian state vector elements characterized by
the location of maximum emission, spatial standard devia-
tion, and emission amplitude. Here we add as the similarity
vector the list of ultra-emitters (> 25 t h−1) identified by Lau-
vaux et al. (2022) from analysis of hotspots in the 2019–2020
TROPOMI data. This ensures that the ultra-emitters are re-
solved on the native 0.25◦× 0.3125◦ grid of the inversion.
We choose to use 600 Gaussian functions to optimize in the
emission state vector, based on our previous experience with
the information content of regional inversions. The inversion
optimizes the amplitude of each Gaussian. We also optimize
16 boundary conditions (4 boundaries× 4 seasons) for a total
of n= 616 state vector elements.

We perform the inversion with lognormal error probability
density functions (PDFs) for prior emissions (Maasakkers et
al., 2019; Lu et al., 2022). This prevents unphysical negative
emissions (Miller et al., 2014) and better captures the heavy
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Figure 3. Prior estimates of methane emissions used for the inversion. Oil, gas, and coal emissions are from the GFEIv2 gridded version
of the national inventories from individual countries reported to the UNFCCC (Scarpelli et al., 2022). Some countries do not report to
the UNFCCC, and their emissions are inferred by Scarpelli et al. (2022) from EIA production statistics. Other anthropogenic emissions
are from EDGARv6 (Crippa et al., 2021). Wetland emissions are 2019 monthly means of the nine-member high-performance subset of
the WetCHARTs inventory ensemble (Ma et al., 2021) and are shown here as the annual means. Blank areas have emissions lower than
1× 10−12 kg m−2 s−1. The total prior emission is shown in Fig. 2 and includes smaller sectors listed in Table 1.

tail of the emission distribution (Yuan et al., 2015; Zavala-
Araiza et al., 2015; Duren et al.,2019; Cusworth et al., 2022)
than a normal error assumption. Specifically, we optimize ln
(x) instead of x such that the prior errors in ln (x) (referred
to hereafter as x′) follow a normal distribution. The bound-
ary condition elements of the state vector are still optimized
assuming normal error distributions.

The inversion finds the optimal estimate of x′ assuming
normal error distributions (lognormal in emission space) by
minimizing the Bayesian cost function J (x′) (Brasseur and
Jacob, 2017):

J
(
x′
)
=
(
x′− x′a

)TS′−1
a
(
x′− x′a

)
+γ

(
y−K′x′

)TS−1
o (y−K′x′), (1)

where x′= ln (x) and xa
′
= ln (xa), xa (n× 1) is the prior

emission estimate (n= 616), and y (m×1) is the ensemble of
TROPOMI super-observations (m= 3 714 062). Sa

′ (n× n)
is the prior error covariance matrix, and So (m×m) is the
observational error covariance matrix; both are assumed to
be diagonal in the absence of better objective information.
K′x′=Kx is the GEOS-Chem forward model simulation of
XCH4 . K= ∂y/∂x (m× n) is the Jacobian matrix that de-
scribes the linear sensitivity of y to x and is constructed col-
umn by column by perturbing individual elements of x in
GEOS-Chem. K′ = ∂y/∂x′ (m× n) describes the sensitiv-
ity of y to x′, which is nonlinear and readily derived from
K following K′i,j = ∂yi

∂ln(xj ) = xj
∂yi
∂xj
= xjKi,j , where i and

j are indices of the observations and the state vector ele-
ments. The regularization factor γ is introduced in Eq. (1)
to prevent overfitting to observations because of the miss-
ing covariant structure (off-diagonal terms) in So. We follow
Lu et al. (2021) and determine an optimal γ value of 0.01
such that

(
x̂′− x′a

)TS′−1
a
(
x̂′− x′a

)
≈ n±

√
2n, the expected

value (±1 standard deviation) of the chi-squared distribution
with n degrees of freedom, where x̂′ is the optimal posterior
estimate.

We solve the nonlinear optimization problem iteratively
using the Levenberg–Marquardt method (Rodgers, 2000):

x′N + 1= x′N +
(
γK′N

TS−1
o KN

′
+ (1+ κ)S

′
−1

a

)−1

(γK′N
TS−1

o (y−KxN )−S′a
−1 (

x′N − xa
′
)
), (2)

where the coefficient κ is fixed at 10 following Chen et
al. (2022), N is the iteration number (x′0 = x′a), and KN

′

is evaluated for x′ = x′N . We iterate on Eq. (2) until the dif-
ferences in all state vector elements between two consecutive
iterations (xN ′ and xN + 1′) are smaller than 0.5 %. We then
take x̂′ = xN + 1′ as the optimal posterior estimate.

The posterior error covariance matrix Ŝ′ on the optimal
posterior estimate is given by (Rodgers, 2000)

Ŝ′ =
(
γK

′TS−1
o K′+S

′
−1

a

)−1
, (3)

where K′ =KN + 1′ is evaluated for the posterior estimate.
The averaging kernel matrix A defining the sensitivity of the
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Table 1. Methane emissions for 2019 in the Middle East and North
Africaa.

Prior estimate Posterior estimate
(Tg a−1)b (Tg a−1)c

Total emission 29.5 39.7 (33.7–45.1)
Anthropogenic 28.5 38.6 (32.5–43.2)
Oil 9.9 8.5 (8.3-9.5)
Gas 3.1 6.3 (4.1–8.3)
Livestockd 5.5 8.2 (6.4–10.0)
Coal 0.28 0.20 (0.10–0.27)
Wastee 8.6 13.2 (10.6–14.2)
Rice 0.38 0.72 (0.58–0.72)
Otherf 0.81 1.4 (1.0–1.6)
Natural 1.0 1.6 (1.2–1.9)
Open fires 0.02 0.03 (0.03–0.04)
Wetlands 0.42 0.53 (0.49–0.54)
Seeps 0.08 0.14 (0.10–0.18)
Termites 0.51 0.87 (0.61–1.2)

a Summing emissions over the 23 individual countries listed in Table 2.
b Prior estimates of oil, gas, and coal emissions are from the GFEIv2
gridded version of the national inventories from individual countries
reported to the UNFCCC or inferred from EIA production data (Scarpelli
et al., 2022). Other anthropogenic emissions are from EDGARv6.
Wetland emissions are the mean of the high-performance subset of the
WetCHARTs v1.3.1 inventory ensemble for 2019 (Ma et al., 2021).
Open-fire emissions are from GFED4s (van der Werf et al., 2017).
Termite emissions are from Fung et al. (1991), and geological seepage
emissions are from Etiope et al. (2019) with scaling from Hmiel et
al. (2020). c Results are from the base inversion of TROPOMI
observations, with the uncertainty range in parentheses obtained from the
36-member inversion ensemble. d Livestock sector includes
contributions from enteric fermentation and manure management.
e Waste sector includes emissions from landfills and wastewater
treatment, which are 5.2 and 3.4 Tg a−1 in the prior estimate and are not
separable in the inversion. f Including industry, stationary combustion,
mobile combustion, aircraft, composting, and field burning of
agricultural residues.

solution to the true value is given by

A=
∂x̂′

∂x′
= IN − Ŝ′S

′
−1

a , (4)

where IN is the identity matrix. The trace of A quantifies the
number of independent pieces of information on x′ obtained
from the observations and is called the degree of freedom for
signal (DOFS).

An implication of using lognormal error statistics for emis-
sions is that the inversion optimizes the median (instead of
the mean) of the lognormal emission PDF, but the mean
can be inferred following xmean = xmediane

ŝ′/2, where ŝ′ is
the diagonal element of the posterior error covariance matrix
(Eq. 3) corresponding to that emission sate vector element
(Lu et al., 2022). This is necessary when summing inversion
results geographically such as to report national emissions.

2.5 Prior and observational error covariance matrices

We assume a geometric standard deviation factor (σg = 2) to
characterize the lognormal error PDF for the prior emission
estimates (i.e., the prior emissions are uncertain by a factor
of 2) such that Sa

′ (with diagonal elements sa′) is constructed
following

√
s′a = ln(σg) (Kirkwood, 1979). A factor of 2 is

typical of the uncertainties in emission factors given by the
IPCC for oil–gas activities (Scarpelli et al., 2020). The prior
error standard deviation on the boundary conditions is taken
to be 10 ppb, which is typical of the root mean square error
(RMSE) of GEOS-Chem simulations using posterior emis-
sion estimates (Chen et al., 2022).

We use the residual error method (Heald et al., 2004) to es-
timate observational error variances including contributions
from the TROPOMI instrument, the retrieval, and the for-
ward model. Here we take into account the error reduction
resulting from averaging individual TROPOMI retrievals y′

into the super-observations y. We first apply the residual er-
ror method to individual retrievals in each 0.25◦× 0.3125◦

grid cell k over the course of 2019. The difference y′−Kxa
between individual TROPOMI retrievals and the prior sim-
ulation is decomposed into an annual mean y′−Kxa for
that grid cell to be corrected in the inversion and a residual
(y′−Kxa− (y′−Kxa)) representing the observational error
for y′. The variance sk of that observational error would pop-
ulate the observational error covariance matrix if we ingested
individual retrievals in the inversion, but in fact we ingest
super-observations each representing an average of P indi-
vidual retrievals. If the observational error for individual re-
trievals averaged into a super-observation was uncorrelated,
then the observational error variance would decrease as 1/P
(central limit theorem), but the decrease is less if the errors
are correlated.

To estimate the observational error variance reduction
associated with averaging P retrievals into one super-
observation for a given 0.25◦× 0.3125◦ grid cell and hour,
we repeat the residual error method but now apply it to the
super-observations y instead of the individual retrievals. In-
stead of computing error variances for individual grid cells,
we sort the errors by the number P of individual retrievals
that went into the super-observation and take statistics for
the dependence of the observational error variance on P over
the whole inversion domain. Results are shown in Fig. 4 with
a comparison to the central limit theorem. We see that the
decrease in the observational error variance with the num-
ber P of individual retrievals going into a super-observation
is much weaker than would be expected for uncorrelated er-
rors. This implies that the observational errors for the individ-
ual retrievals contributing to a super-observation for a given
0.25◦×0.3125◦ grid cell and hour are highly correlated. The
forward model transport component of the observational er-
ror is in fact perfectly correlated because the model provides
a single prediction for all individual retrievals. But most of
the observational error is expected to be contributed by the
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Table 2. National anthropogenic methane emissions in 2019a.

Country Oil Gasb Livestock Coal Waste Rice Other Anthropogenic total (Tg a−1) Sensitivity to observationsc

Algeria Posterior 0.08 2.0 0.43 0 0.95 0 0.01 3.5 (2.4–4.4) 0.84
Prior 0.04 1.0 0.29 0 0.65 0 0.01 2.0

Bahrain Posterior 0.14 0.07 0 0 0.19 0 0.02 0.42 (0.39–0.43) 0.91
Prior 0.17 0.03 0 0 0.06 0 0.01 0.27

Egypt Posterior 0.35 0.15 0.78 0 1.6 0.35 0.12 3.4 (2.5–4.0) 0.96
Prior 0.24 0.07 0.41 0 0.71 0.15 0.06 1.7

Iran Posterior 0.78 1.0 1.20 0.04 1.7 0.22 0.32 5.3 (5.0–5.5) 0.97
Prior 2.6 0.52 0.65 0.02 0.81 0.13 0.14 4.9

Iraqd Posterior 1.2 0.04 0.17 0 0.73 0.02 0.05 2.2 (1.8–3.1) 0.98
Prior 2.9 0.03 0.14 0 0.54 0.01 0.04 3.7

Israeld Posterior 0 0.03 0.11 0 0.26 0 0.01 0.41 (0.31–0.41) 0.81
Prior 0 0.02 0.06 0 0.13 0 0 0.21

Jordand Posterior 0 0.11 0.06 0 0.42 0 0.03 0.62 (0.45–0.68) 0.91
Prior 0 0.06 0.03 0 0.19 0 0.01 0.29

Kuwait Posterior 0.02 0.01 0.01 0 0.83 0 0.08 0.95 (0.58–0.98) 0.85
Prior 0.04 0 0.01 0 0.27 0 0.03 0.35

Lebanon Posterior 0 0.02 0.03 0 0.09 0 0 0.15 (0.09–0.18) 0.76
Prior 0 0.01 0.01 0 0.04 0 0 0.07

Libya Posterior 0.37 0.02 0.10 0 0.11 0 0.01 0.61 (0.56–0.85) 0.76
Prior 0.76 0.02 0.09 0 0.09 0 0.01 0.97

Mauritania Posterior 0 0.01 0.18 0 0.03 0 0.02 0.23 (0.20–0.28) 0.20
Prior 0 0.01 0.21 0 0.04 0.01 0.02 0.29

Morocco Posterior 0 0.04 0.61 0 0.67 0 0.02 1.3 (1.1–1.7) 0.89
Prior 0 0.03 0.38 0 0.71 0 0.02 1.2

Niger Posterior 0.01 0 1.1 0 0.18 0.01 0.08 1.3 (0.95–1.8) 0.65
Prior 0.01 0 0.69 0 0.12 0.01 0.05 0.86

Omand Posterior 2.0 0.10 0.06 0 0.15 0 0.03 2.4 (1.2–3.4) 0.75
Prior 0.62 0.06 0.04 0 0.10 0 0.02 0.83

Palestined Posterior 0 0.01 0.02 0 0.16 0 0 0.19 (0.14–0.19) 0.89
Prior 0 0.01 0.01 0 0.08 0 0 0.09

Qatar Posterior 0.07 0.01 0.01 0 0.23 0 0.04 0.37 (0.31–0.38) 0.78
Prior 0.05 0.01 0.01 0 0.19 0 0.03 0.28

Saudi Arabia Posterior 0.09 1.1 0.31 0 2.5 0 0.34 4.3 (2.4–6.0) 0.80
Prior 0.03 0.43 0.16 0 0.88 0 0.15 1.6

Syriad Posterior 0.06 0.03 0.41 0 0.39 0 0.01 0.90 (0.54–1.4) 0.68
Prior 0.05 0.01 0.16 0 0.19 0 0 0.42

Tunisia Posterior 0.03 0.01 0.15 0 0.17 0 0.04 0.40 (0.27–0.50) 0.61
Prior 0.02 0.01 0.08 0 0.1 0 0.02 0.23

Turkey Posterior 0.03 0.08 1.4 0.16 1.2 0.02 0.13 3.0 (2.0–4.1) 0.93
Prior 0.02 0.09 1.5 0.26 2.1 0.04 0.16 4.2

Turkmenistan Posterior 1.8 1.4 0.86 0 0.17 0.09 0.02 4.4 (2.8–5.1) 0.85
Prior 0.84 0.58 0.34 0 0.06 0.03 0.01 1.9

UAEd Posterior 1.4 0.07 0.05 0 0.31 0 0.01 1.8 (1.4–2.2) 0.97
Prior 1.4 0.06 0.04 0 0.27 0 0.01 1.8

Yemen Posterior 0.03 0 0.19 0 0.21 0 0.01 0.44 (0.44–0.47) 0.65
Prior 0.02 0 0.18 0 0.22 0 0.01 0.44

a Prior estimates are from national bottom-up inventories. Posterior estimates are optimized by inversion of TROPOMI observations with uncertainty ranges on total national anthropogenic emissions given
in parentheses. See footnotes in Table 1 for more information on prior and posterior estimates. b National gas emissions by subsector are listed in Table S4. c Sensitivity of posterior emissions to the
TROPOMI satellite observations as determined from the diagonal elements of the reduced averaging kernel matrix (averaging kernel sensitivity). The sensitivity measures the ability of TROPOMI
observations to determine the posterior solution independently of the prior estimate, ranging from 0 (not at all) to 1 (fully). d We have limited confidence in separating national emissions between Palestine
(State of Palestine), Jordan, and Israel; Syria and Iraq; and the UAE and Oman in the inversion due to high posterior error correlations. See more details in Sect. 3.2 and Fig. 7.
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Figure 4. Reduction in the observational error variance (σ 2
super)

from the averaging of individual TROPOMI retrievals into super-
observations for ingestion in the inversion. The symbols show the
error variances computed with the residual error method from in-
dividual super-observations over the Middle East and North Africa
inversion domain as a function of the number P of individual re-
trievals averaged into the super-observations. Each symbol repre-
sents the statistics for at least 100 000 super-observations. The data
are fitted to a two-component representation of the observational
error variance σ 2

super (P ) as given by Eq. (5). Also shown in the
figure is the error variance reduction function 1/P if there was no
error correlation between individual retrievals, as given by the cen-
tral limit theorem.

satellite retrieval (Wecht et al., 2014), and it appears that
this error component is also correlated between individual
retrievals.

To model the observational error correlation between in-
dividual retrievals contributing to a super-observation and
thereby fit the results of Fig. 4, we adopt a two-component
error variance equation following Miyazaki et al. (2012) and
Pendergrass et al. (2023) to separate the contributions from
the forward model transport error variance (σ 2transport) and
the satellite single-retrieval error variance (σ 2

retrieval) to the
observational error variance of the super-observation (σ 2

super):

σ 2
super = σ

2
retrieval

(
1− rretrieval

P
+ rretrieval

)
+ σ transport2,

(5)

where rretrieval is the error correlation coefficient for the in-
dividual retrievals averaged into the super-observation, with
the transport error being perfectly correlated (rtransport =

1) by definition. Fitting Eq. (5) to the data in Fig. 4 we
obtain error standard deviations σretrieval = 16.4 ppb (with
rretrieval = 0.55) and σ transport= 4.5 ppb. Some error cor-
relation in retrievals would indeed be expected based on
similarity in surface types and aerosol optical depth. The
observational error standard deviation decreases initially
as the number P of averaged retrievals increases and ap-

proaches an asymptotic value of 13.0 ppb for P > 10 in-
cluding contributions from the transport error standard devi-
ation and the super-observation retrieval error standard devi-
ation (r1/2

retrievalσretrieval = 12.2 ppb) added in quadrature. Val-
idation of TROPOMI retrievals with ground-based column
observations from the Total Carbon Column Observing Net-
work (TCCON) by Lorente et al. (2021) yields a retrieval
error standard deviation of 13.3 ppb (11.5 ppb if excluding
two high-latitude TCCON stations) when averaging all con-
current retrievals within 300 km of a TCCON station cor-
responding to 90–400 individual retrievals. This is in close
agreement with our asymptotic value of 12.2 ppb. Our de-
rived transport error standard deviation of 4.5 ppb for XCH4

is consistent with the transport error standard deviation of
36 ppb for surface concentrations derived by Lu et al. (2021)
from the residual error method at surface sites, considering
that the amplitude of variability for column concentrations is
about 10 times lower than for surface concentrations (Cus-
worth et al., 2018).

Using Eq. (5) for the dependence of the observational er-
ror variance on P with fitted parameters, we can now adjust
the observational error variances sk derived previously for in-
dividual retrievals in 0.25◦× 0.3125◦ grid cells k to apply to
the super-observations actually ingested in the inversion. We
define for this purpose a normalized scaling factor g(P )=
σ 2

super(P )/ σ 2
super(1). Thus a super-observation for grid cell k

in a given hour that averages P retrievals has an observa-
tional error variance g(P )sk . We construct the diagonal ob-
servational error covariance matrix So in this manner. The
resulting observational error variance averages (10.4 ppb)2

for the super-observations in the inversion domain. The er-
ror correlation between individual retrievals suggests that
there should be in fact some error correlation between super-
observations, even though these observations are for differ-
ent grid cells and/or different hours. This would introduce
off-diagonal structure in So, but we do not have sufficient in-
formation to construct this off-diagonal structure objectively.
The regularization factor γ in Eq. (1) is intended to account
for this correlation and correct for the assumption of diago-
nality in So, as explained above.

2.6 Attributing posterior emissions to individual
countries and sectors

The posterior GMM state vector (n× 1) can be readily
mapped on the p native 0.25◦× 0.3125◦ grid cells of the in-
version domain using the GMM-generated weighting of each
Gaussian on that grid as represented by a matrix W1(p× n).
The contributions from each of q emission sectors (Table 1)
to the emissions in individual grid cells are taken from the
prior inventories to produce a matrix W2(pq × n). We can
then apply a summation matrix W3 (r ×pq) to aggregate
emissions over r countries and/or sectors of interest. The re-
sulting matrix W=W3W2 (r × n) thus represents the linear
transformation from the posterior GMM state vector (n× 1)
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to a reduced state vector (r×1) of sectoral emissions from in-
dividual countries. The reduced state vector (xred), posterior
error covariance (Ŝred), and averaging kernel matrix (Ared)
are computed as

x̂red =Wx̂, (6)

Ŝred =WŜWT, (7)
Ared =WAW∗, (8)

where W∗ =
(
WTW

)−1WT is generalized pseudo-inverse of
W (Calisesi et al., 2005).

2.7 Inversion ensemble and uncertainty estimate

Our base inversion described above makes assumptions on
the values of inversion parameters including uncertainty of a
factor of 2 in the prior emissions (geometric error standard
deviation σg = 2), an error standard deviation σb = 10 ppb
for boundary conditions, and a regularization factor γ =
0.01. The posterior error matrix of Eq. (3) is a fair repre-
sentation of the uncertainty in the analytical solution (x̂′, Ŝ′)
given this choice of inversion parameters, but it does not ac-
count for uncertainties in the parameters. We therefore gen-
erate a 36-member ensemble of sensitivity inversions vary-
ing the parameters. The inversion ensemble includes (1) us-
ing σg = 1.5 or 2.5, (2) σb = 5 or 20 ppb, (3) γ = 0.005 or
0.02, and (4) assuming normal prior error distributions for
emissions with an error standard deviation of 50 % following
Lu et al. (2021). Similar to Chen et al. (2022), we find that
the uncertainty range defined by the optimal estimates of this
36-member ensemble is larger than the posterior error from
the base inversion. We thus report the uncertainty in poste-
rior estimates as the range of solutions given by the inversion
ensemble.

3 Results and discussion

3.1 Evaluation of posterior emission estimates

Figure 2 shows the posterior emissions, and Fig. 5 shows
the posterior–prior emission ratios on the 0.25◦× 0.3125◦

grid. Also shown are the averaging kernel sensitivities (di-
agonal elements of the averaging kernel matrix A) that iden-
tify where the TROPOMI observations are most effective at
quantifying emissions. We achieve 123 independent pieces
of information (DOFS) to quantify emissions over the in-
version domain. The GMM aggregates weak prior emissions
mainly following spatial proximity (dictated by the similar-
ity factors longitude and latitude). The rectilinear latitude–
longitude patterns in low-emitting regions reflect this aggre-
gation. Thin lines between some of the rectilinear patterns
reflect the superimposition of corrections from individual
Gaussians onto the 0.25◦× 0.3125◦ grid.

We implemented the posterior emissions in GEOS-chem
to check that the posterior simulation provides an improved
fit to the TROPOMI observations as compared to the prior
simulation (Fig. 5). The mean model bias over the inversion
domain decreases from −10.4 to −0.31 ppb. The root mean
square error (RMSE) decreases from 18.6 to 14.7 ppb, with
improvement limited by the observational error (Fig. 4).

We also find an improved ability of the posterior esti-
mate to fit to independent in situ surface flask measure-
ments (Fig. 6). These in situ observations are collected from
the GLOBALVIEWplus CH4 ObsPack v4.0 database com-
piled by the National Oceanic and Atmospheric Administra-
tion (NOAA) Global Monitoring Laboratory (Schuldt et al.,
2021). There are five sites in the region, most of them re-
mote (Table S2). The overall mean bias across the five sites
is reduced from−8.9 to−1.9 ppb. The RMSE decreases only
slightly from 27.0 to 24.5 ppb, limited by the forward model
transport error in simulating surface concentrations (Lu et al.,
2021).

3.2 Emissions from individual countries and sectors

Table 1 gives the region-wide emissions over the Mid-
dle East and North Africa for 2019 including a total of
23 individual countries. Our best estimate of the posterior
anthropogenic and natural emissions over this region are
38.6 and 1.6 Tg a−1, respectively, as compared to 28.5 and
1.0 Tg a−1 in the prior estimate. Oil–gas is the largest source
(8.5 Tg a−1 for oil and 6.3 Tg a−1 for gas), followed by waste
(13.2 Tg a−1) and livestock (8.2 Tg a−1). Waste includes
emissions from landfills and wastewater, which are combined
in the inversion because of their spatial overlap. Coal and rice
emissions are minimal. Our best estimate of the total anthro-
pogenic emissions in the region is 35 % higher than the prior
estimate, which can be mainly attributed to upward correc-
tions for gas (+3.2 Tg a−1, +103 %), waste (+4.6 Tg a−1,
+53 %), and livestock (+2.7 Tg a−1, +49 %). We find a
downward correction for oil (−1.4 Tg a−1, −14 %).

Table 2 gives the total and sectoral anthropogenic emis-
sions for each of the 23 countries in the region. Also shown
are averaging kernel sensitivities, which measure to what
degree TROPOMI observations can quantify national emis-
sions independently of the prior estimate (0: not at all,
1: fully). All countries have averaging kernel sensitivities
greater than 0.65 except four with very low emissions. Our
ability to separate emissions from individual countries in the
inversion is shown in Fig. 7 using error correlations between
posterior national emission estimates (0: perfect separation,
±1: no separation). We find that most of the error correlations
are smaller than 0.2, indicating successful separation. Ex-
ceptions are between Palestine, Jordan, and Israel; between
Syria and Iraq; and between the United Arab Emirates (UAE)
and Oman, where our inversion shows limited confidence in
separating the emission estimates by country (flagged in Ta-
ble 2).

https://doi.org/10.5194/acp-23-5945-2023 Atmos. Chem. Phys., 23, 5945–5967, 2023



5954 Z. Chen et al.: Satellite quantification of methane emissions and oil–gas methane intensities

Figure 5. Optimization of methane emissions over the Middle East and North Africa in 2019 by inversion of TROPOMI observations.
Results are from the base inversion and are shown on the 0.25◦×0.3125◦ native grid of the inversion. (a) Ratios between posterior and prior
emissions. (b) Averaging kernel sensitivities (dimensionless). The averaging kernel sensitivities are the diagonal elements of the averaging
kernel matrix, indicating the ability of the observations to quantify emissions independently from the prior emissions (1: fully, 0: not at all).
The number of degrees of freedom for signal (DOFS, defined as the trace of the averaging kernel matrix) is given inset. (c) Mean differences
between the GEOS-Chem simulation with prior emissions and observations. The mean bias (MB) and root mean square error (RMSE) over
the study domain are given inset. (d) Same as (c) but for the GEOS-Chem simulation with posterior emissions.

Figure 6. Evaluation of inversion results with independent in situ observations. The figure compares GEOS-Chem simulations using prior or
posterior emissions to in situ flask measurements from five surface sites in 2019 compiled by the NOAA GLOBALVIEWplus CH4 ObsPack
v4.0 database. The five sites are listed in Table S2. The annual mean biases and root mean square errors (RMSEs) for each site are shown.
The spatial mean biases and the overall RMSEs for the ensemble of sites are given inset.
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Figure 7. Error correlation coefficients (r) between posterior estimates of total anthropogenic emissions from different countries in the
inversion domain, measuring the ability of the inversion to separate emissions in one country from another (±1: not at all, 0: fully).

Our region-wide estimate of oil emissions is lower than in
the UNFCCC-based estimate from GFEIv2, but individual
countries may be either higher or lower. We find large down-
ward corrections in Iran (−1.8 Tg a−1), Iraq (−1.4 Tg a−1),
and Libya (−0.4 Tg a−1), which we will see later are likely
due to overestimate of emission factors used in the UNFCCC
reports or from the IPCC (2006) Tier 1 method (Sect. 3.3).
We find upward corrections in other major oil-producing
countries, mainly in Oman (+1.4 Tg a−1) and Turkmenistan
(+1.0 Tg a−1), likely due to the large number of super-
emitting point sources not accounted for in the UNFCCC es-
timates (Varon et al., 2019, 2021; Guanter et al., 2021; Lau-
vaux et al., 2022a, b; Ikakulis-Loixalte et al., 2022; Ehret et
al., 2022).

We find upward corrections of gas emissions in all coun-
tries compared to the UNFCCC-based national bottom-
up inventories as given by GFEIv2, mainly in Algeria
(+1.0 Tg a−1), Turkmenistan (+0.8 Tg a−1), Saudi Arabia
(+0.7 Tg a−1), and Iran (+0.5 Tg a−1). Again, this is likely
due to super-emitting point sources not included in the re-
ports. We further analyze gas emission by subsector in-
cluding upstream or production (leaks, venting, inefficient
flaring), midstream (transmission and storage), and down-
stream (distribution), using gridded subsectoral information
from GFEIv2, and Table 3 shows results for the top emit-
ting countries, where the subsectoral emissions from in-
dividual 0.25◦× 0.3125◦ grid cells are summed following

the procedure of Sect. 2.6. The dominant subsector in Al-
geria is upstream (76 %), while the dominant subsector in
Iran is downstream (67 %), consistent with all of Iran’s gas
production being consumed domestically (EIA-Iran, 2021).
Turkmenistan and Saudi Arabia also show high shares of
downstream emissions (42 % and 44 %, respectively), reflect-
ing their heavy domestic consumption. Saudi Arabia relies
largely on its offshore production for domestic gas use (EIA,
2020), and transmission from offshore platforms to popula-
tion centers, including onshore storage (Omara et al., 2023),
likely explains the large contribution from midstream emis-
sions (53 %). The large difference in subsectoral contribu-
tions between countries stresses the importance of setting
country-specific emission control strategies.

Figure 8 shows the hotspot 0.25◦× 0.3125◦ grid cells in
our posterior estimate, defined by emissions greater than
2.0 t h−1 averaged over the year (18 Gg a−1). Turkmenistan,
Algeria, and Oman have a large number of hotspot grid cells,
and for these countries we also estimate exceedingly high na-
tional emissions from oil–gas activity (Table 2). The hotspots
identified in our inversion have the same general geograph-
ical distribution as the ultra-emitting facilities (> 25 t h−1)
previously identified by Lauvaux et al. (2022) from single-
pass TROPOMI observations, as shown in Fig. 8, though the
precise locations are often at odds. The Lauvaux et al. (2022)
threshold for ultra-emitters is much higher than our thresh-
old for hotspot grid cells because theirs is based on single-
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Table 3. Subsectoral gas emissions from top emitting countries∗.

Upstream Midstream Downstream
(Tg a−1) (Tg a−1) (Tg a−1)

Algeria 1.6 0.29 0.20
Turkmenistan 0.67 0.23 0.64
Saudi Arabia 0.02 0.46 0.38
Iran 0.18 0.15 0.68

∗ Posterior gas emission estimates from inversion of TROPOMI data,
separated by subsector using gridded information from the UNFCCC-based
GFEIv2 inventory. Upstream includes exploration, production, and
processing. Midstream includes transmission and storage. Downstream
includes distribution to consumers. The sum of upstream, midstream, and
downstream emissions adds up to the posterior total gas emissions listed in
Table 2 for each country.

pass detection of emissions that may be single or intermit-
tent events, whereas ours is based on annual mean emissions.
This may also explain some of the differences in hotspot
locations. We identify more hotspots in Saudi Arabia and
Oman, where high regional background hinders the single-
point source detection method of Lauvaux et al. (2022). We
also find a number of hotspots from offshore emissions in
the Persian Gulf that they would not have been able to detect
with their method. Conversely, we detect no hotspots over
Syria, but Lauvaux et al. (2022) detect several, likely reflect-
ing poor prior information for Syria in our inversion.

3.3 Major emitting countries and comparison to
previous studies

Figure 9 compares our posterior emissions from the top six
emitting countries in the Middle East and North Africa (Iran,
Turkmenistan, Saudi Arabia, Algeria, Egypt, and Turkey, ac-
counting for 62 % of region-wide anthropogenic emissions)
to the prior emission estimate and to previous inversion re-
sults from Worden et al. (2022), Deng et al. (2022), and
Western et al. (2021) that all used the much sparser GOSAT
data. Worden et al. (2022) presented national results by map-
ping the global 2019 inversion results of Qu et al. (2021)
at 2◦× 2.5◦ resolution, with a prior estimate of fuel emis-
sions from GFEIv1 (Scarpelli et al., 2020) and other sectors
from EDGARv6. Deng et al. (2022) compiled results of 11
independent inversions from different groups contributing to
the Global Methane Budget initiative (Saunois et al., 2020)
for 2010–2017. Western et al. (2021) estimated total 2010–
2017 emissions from North African countries at monthly
0.35◦× 0.23◦ resolution with prior emissions from GFEIv1
for fuel and the 2012 EDGARv4.3.2 inventory for other an-
thropogenic sources, but they did not separate their results by
sector.

Our estimate of total anthropogenic emissions in Iran is
consistent with the prior estimate but with a shift in sec-
toral attribution from oil to livestock and waste (Tables 2 and
S3). Our oil–gas estimate (1.8 Tg a−1) is within the large un-

Figure 8. Methane emission hotspots from oil–gas activity in the
Middle East and North Africa. (a) The hotspot 0.25◦× 0.3125◦ grid
cells from our inversion in 2019, defined as emissions greater than
2.0 t h−1 averaged over the year (18 Gg a−1). (b) Ultra-emitters (>
25 t h−1) identified from 2019–2020 single-pass TROPOMI data by
Lauvaux et al. (2022).

certainty range of Deng et al. (2022) (1.0–6.2 Tg a−1) but
lower than Worden et al. (2022) (3.1–4.3 Tg a−1) and the
UNFCCC-based GFEIv2 (3.1 Tg a−1, our prior estimate).
GFEIv2 uses emission factors obtained from the Iranian
government report in 2000, which may be unsuitable for
2019. The prior estimate of oil–gas emissions of Worden
et al. (2022) is from the 2016 GFEIv1, higher than that in
the updated 2019 GFEIv2 because of intensified economic
sanctions beginning in 2018 (EIA-Iran, 2021). The 2◦×2.5◦

resolution of Worden et al. (2022) may also limit the inver-
sion’s ability to effectively separate emissions between Iran
and Iraq, which are close to the border (Fig. 2).

Our estimate for Turkmenistan is higher than the prior
emissions and on the high end of the uncertainty ranges
from Worden et al. (2022) and Deng et al. (2022). We es-
timate higher oil–gas emissions (3.2 Tg a−1) than GFEIv2
(1.4 Tg a−1), pointing to dense super-emitting point sources
that are not properly accounted for in the bottom-up esti-
mates (Varon et al., 2019, 2021; Guanter et al., 2021; Lau-
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Figure 9. National methane emissions from the top six emitting countries in the Middle East and North Africa. Results from our work are
compared to our prior estimates and to GOSAT inversions reported by Worden et al. (2022), Deng et al. (2022) (not for all countries), and
Western et al. (2021) (for North Africa only, without separation by sector). Fossil fuel includes emissions from oil, gas, and coal; agriculture
includes emissions from livestock and rice; and waste includes emissions from landfills and wastewater treatment. Vertical bars are reported
uncertainty ranges for total national emissions. Sectors are aggregated to enable comparison with previous studies. More detailed sectoral
breakdown for our work is in Table 2.

Table 4. Correlation coefficients (r) between upstream emissions
and activity metricsa.

Oil Gas Oil + gas

Production rates −0.16 0.14 −0.23
Well counts 0.25 0.19 0.32
Production rates+well countsb 0.26 0.28 0.28

a The correlation is calculated using posterior oil–gas upstream emissions and
activity data for 12 individual countries listed in Fig. 11. b A multiple linear
regression using two explanatory variables (production rates, well counts) to fit the
posterior oil–gas emissions.

vaux et al., 2022; Irakulis-Loitxate et al., 2022a; Ehret et
al., 2022). Our oil–gas estimate is also at the high end of
0.9–2.8 Tg a−1 of Deng et al. (2022) and 2.0–3.2 Tg a−1 of
Worden et al. (2022), which we explain by the better ability
of TROPOMI than sparse GOSAT to capture point sources
(Fig. 8).

Our estimate for Saudi Arabia is at the high end of the
large Deng et al. (2022) uncertainty range and is higher than
the prior estimate and Worden et al. (2022). We find that most
of the emissions in Saudi Arabia are from waste. Our esti-
mate higher than Deng et al. (2022) and Worden et al. (2022)

likely reflects the low observational density of GOSAT over
Saudi Arabia, as evidenced in Worden et al. (2022) by very
low averaging kernel sensitivities.

Our estimate of gas emissions in Algeria is smaller than
Worden et al. (2022), but our larger estimate of livestock and
waste offsets gas and yields good agreement on the total na-
tional emission. We find a low error correlation (< 0.2) be-
tween posterior gas and waste emissions in Algeria, implying
that TROPOMI can effectively separate these two sectors.
Both studies show much higher gas emissions than the prior
estimate, reflecting point sources that are not accounted for
in the UNFCCC-based inventory. Varon et al. (2021) found
from repeated point-source sampling with the Sentinel-2
satellite instrument over a 10-month period that a single
super-emitting oil well in Algeria amounted to 6 % of the
UNFCCC-reported oil–gas emissions.

Our estimate and Worden et al. (2022) are in close agree-
ment on the total and sectoral emissions for Egypt, featuring
in our work a large increase in waste emissions over the prior
estimate (Table 2). Western et al. (2021) only reported a total
emission for Egypt but stressed the underestimate of agricul-
tural emissions (livestock+ rice) in the national government
report, consistent with our finding (Table 2) and Worden et
al. (2022). Both our work and Worden et al. (2022) show
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higher national total emissions than Western et al. (2021)
over Egypt and Algeria, which may reflect smoothing errors
in the inability of GOSAT data to effectively inform their
high-resolution inversion.

We attribute posterior emissions over Turkey largely to
the livestock and waste sectors with little contribution from
oil–gas, in contrast to the other five countries. Our estimate
of total and sectoral emissions is lower than our prior esti-
mate and consistent with Worden et al. (2022). Turkey has
many hydroelectric reservoirs (Lehner et al., 2011) that are a
source of methane generally not included in national invento-
ries (Li and Zhang, 2014). A global bottom-up inventory of
methane emissions from individual hydroelectric reservoirs
(Delwiche et al., 2022), including reservoir surfaces and flow
through turbines, found emissions of only 0.03 Tg a−1 for
Turkey, which is small compared to our national emission
estimate of 3.0 (2.0–4.1) Tg a−1.

3.4 Oil–gas emission factors, activity metrics, and
methane intensities

The IPCC (2006) recommends the use of emission factors
and activity data to construct bottom-up emission invento-
ries. For the upstream, midstream, and downstream oil–gas
subsectors it recommends that emission factors be defined
per unit of oil–gas produced, transported/stored, and con-
sumed, respectively. For oil the emission is almost exclu-
sively from the upstream subsector, while for gas all three
subsectors can contribute (Table 3). Figure 10 shows national
upstream emission factors from major producers in the Mid-
dle East and North Africa, comparing our inversion results to
GFEIv2 and using EIA oil and gas production statistics as an
activity metric (EIA, 2020). Also shown are the ranges from
the IPCC (2006) Tier 1 guidelines. Scarpelli et al. (2022)
pointed out that emission factors computed in this manner for
the national inventories reported to the UNFCCC span sev-
eral orders of magnitude, and our inversion finds the same.
The IPCC (2006) Tier 1 emission factors themselves span
2 orders of magnitude (Fig. 10). Such a range means that the
emission factors cannot be reliable and further implies that
production is not the appropriate activity metric for estimat-
ing methane emissions.

Figure 11 further illustrates the unsuitability of predict-
ing methane emissions from oil and gas production rates by
showing the ranked production rates from the top produc-
ing countries along with the corresponding posterior methane
emissions. There is no significant relationship between the
two. The largest emitters are not the largest producers. Re-
cent studies in the US suggested that the number of wells
and the drilling of new wells may be a better predictor of
methane emission than production rates (Allen et al., 2022;
Lu et al., 2023; Varon et al., 2022). We examined the corre-
lation with well counts for the Middle East and North Africa
by using the Enverus-based Oil and Gas Infrastructure Map-
ping (OGIM_v1; Omara et al., 2023) database, recognizing

that the data are incomplete particularly for new wells which
could be the largest emitters (Allen et al., 2022) and also
possibly for marginal wells (Omara et al., 2022). As shown
in Table 4, we find that national emissions correlate weakly
with well counts (r = 0.25 for oil and r = 0.19 for gas), and
the correlation increases only slightly when combined with
production rates (r = 0.26–0.28).

It appears that the ability to relate oil–gas methane emis-
sions to simple activity metrics is compromised by the im-
portance of infrastructure type and management practices
in driving oil–gas emissions. For example, national oil–gas
emissions are largest in Algeria and Turkmenistan, due to
the exceedingly leaky infrastructure previously documented
by observations of super-emitting point sources from space
(Guanter et al., 2021; Varon et al., 2021; Lauvaux et al., 2022;
Ehret et al., 2022). These super-emitters imply poor regula-
tions and insufficient infrastructure (Lwaszczuk et al., 2021;
Lauvaux et al., 2022; Irakulis-Loitxate et al., 2022a). Long-
lasting venting and leaks detected in Turkmenistan may be
related to old and inefficient equipment (Carbon Limits,
2013; Varon et al., 2019; Irakulis-Loitxate et al., 2022a). A
lack of infrastructure in Algeria to transport and process gas
(Ouki, 2019) from remote production fields challenges the
country’s gas takeaway capacity, as illustrated by the exceed-
ingly high volume of flared gas (Fig. 12) derived from flare
radiances detected by the Visible Infrared Imaging Radiome-
ter Suite (VIIRS) instrument (Elvidge et al., 2016). Studies in
the US (Deighton et al., 2020; Omara et al., 2016, 2022) also
found that equipment negligence and disrepair are the pri-
mary drivers of methane emissions for low-production wells.
The impact of these stochastic processes (equipment main-
tenance, local management practices) on emissions is how-
ever difficult to quantify and might vary largely from basin
to basin and from country to country. Standard bottom-up in-
ventories that solely rely on activity metrics are thus unable
to accurately quantify oil–gas emissions. Recent bottom-up
studies (Höglund-Isaksson et al., 2017, 2020) have advanced
the estimation of methane emissions by additively consider-
ing the impact of management practices. Höglund-Isaksson
et al. (2017) in particular simulated global oil–gas emissions
for 1980–2012 with the inclusion of country-specific param-
eters on associated gas flows reflecting variations in manage-
rial decisions and arrived at closer consistency with top-down
estimates. Our finding stresses the critical importance of top-
down emission estimates from atmospheric observations in
supporting the global stocktake and UNFCCC reporting.

A useful metric for assessing the potential for emission
reductions from the oil–gas industry is the methane inten-
sity, defined by the industry-based Oil and Gas Climate Ini-
tiative (OGCI, 2021) as the upstream oil–gas emissions per
unit of gas production. This measures the methane lost to the
atmosphere rather than taken to market. The OGCI (2021) re-
cently announced its 2025 upstream intensity target of 0.2 %.
Figure 13 shows the methane intensities for major energy-
producing countries, assuming average methane gas content
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Figure 10. Country-level emission factors for oil and gas upstream activity in 2019. The emission factors represent the amount of methane
emitted per unit of oil or gas produced, following the definition of the IPCC (2006). Values are shown for our posterior estimates and for
the UNFCCC reports as implemented in GFEIv2 and used as for our prior estimate. Also shown is the range of values from the IPCC Tier
1 methods (IPCC, 2006), from the lowest value for developed countries to the highest value for developing countries and countries with
economies in transition. GFEIv2 estimates of emission factors for Iraq, Oman, and Libya are from IPCC (2006) Tier 1 methods because
these countries do not report to the UNFCCC. Horizontal bars indicate the uncertainty range inferred from our inversion ensemble.

of 92 % by volume (Scarpelli et al., 2022). We find a wide
range of methane intensities across countries, spanning from
17.6 % for Iraq to 0.06 % for Qatar. The mean for the region
is 1.8 %, which can be compared to a mean value of 2.5 % for
the US in 2019 (Lu et al., 2023). High methane intensities re-
flect leaky infrastructure combined with deliberate venting or
inefficient flaring of gas. For example, emissions and produc-
tion in 2019 are high in both Iraq and Iran, with the differ-
ence that gas is taken to market in Iran but vented/flared in
Iraq, as indicated by the much higher ratio of VIIRS flared-
gas volume to gas production in Iraq (Fig. 12). This explains
the higher methane intensity of Iraq compared to 0.61 % for
Iran. Moreover, although Iraq has a smaller gas emission fac-
tor than Turkmenistan (Fig. 10), its much larger ratio be-
tween oil emissions and gas production to market compen-
sates and contributes to a higher methane intensity, pinpoint-
ing inadequate operations in Iraq’s oil production. The ratio
of flared gas to production in Turkmenistan is even smaller
than in Iran, but the methane intensity of Turkmenistan is
much higher. This can be explained by prolonged venting

and leaks (Varon et al., 2019; Irakulis-Loitxate et al., 2022a)
related to poor infrastructure and management practices.

The OGCI (2021) methane intensity target of 0.2 % is
based on bottom-up emission models of methane emission
from oil–gas infrastructure and is vastly exceeded in all coun-
tries except three: Kuwait (0.15 %), Saudi Arabia (0.14 %),
and Qatar (0.06 %).

There are likely one or more of the following reasons for
the small intensities in these three countries.

1. Widespread associated gas capture. Saudi Arabia aims
to capture most of its associated gas produced (EIA,
2020) as a part of the World Bank’s Zero Routine Flar-
ing initiative.

2. Modern infrastructure. More than half of Qatar’s liq-
uefied natural gas (LNG) compressor mega trains, used
to convert offshore gas to LNG, were built after 2009.
Qatar also supports infrastructure upgrades that improve
gas flare efficiency from offshore production and boil-
off gas recovery in the LNG chains (Qatargas, 2022).
Also, Saudi Arabia has continuously invested in infras-
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Figure 11. Ranked oil and gas production rates in 2019 from the top producing countries in the Middle East and North Africa, with
corresponding posterior estimates of methane emissions from that sector. Production statistics are from EIA (2020).

tructure to maintain its oil and gas production capacity
(EIA, 2020).

3. A small number of high-production wells with cen-
tralized infrastructure. The majority of Qatar’s gas is
produced in ∼ 200 wells in the offshore North Field
and processed in 14 compressor trains and 2 conden-
sate refineries in Ras Laffan Industrial City (Qatargas,
2022). This finding suggests that infrastructure devel-
opments on improving associated gas capture, modern-
izing equipment, and improving management practices
are effective avenues to reducing the methane inten-
sities and achieving the OGCI (2021) target of 0.2 %
methane intensity. Decreasing the methane intensities
in all countries in the Middle East and North Africa to
0.2 % would reduce total oil–gas upstream emissions in
the region to 1.1 Tg a−1 and represent a 26 % reduction
in total anthropogenic emissions in the region (Table 1).
This would make a major contribution toward the col-
lective goal of the Global Methane Pledge to decrease
methane emissions by 30 % by 2030 (Climate and Clean
Air Coalition, 2021).

4 Conclusions

We used 2019 TROPOMI satellite observations in a high-
resolution inversion to infer methane emissions from the
Middle East and North Africa region at up to 25 km× 25 km
resolution with an emphasis on the contributions from indi-
vidual countries and from the oil and gas sector. Our pur-

pose was to evaluate the national inventories submitted to the
United Nations Framework Convention on Climate Change
(UNFCCC) under the Paris Agreement and to identify av-
enues for climate action toward meeting the Global Methane
Pledge.

Our inversion used as a prior estimate a gridded version
of the national fuel inventories reported by individual coun-
tries to the UNFCCC, thus enabling direct evaluation of these
inventories. It applied Bayesian synthesis of the prior inven-
tories with the TROPOMI observations to analytically ob-
tain optimal emission estimates, thus providing closed-form
characterization of information content and facilitating the
creation of an inversion ensemble for conservative uncer-
tainty estimates on posterior emissions. Innovations in our
inversion methodology include specific resolution of ultra-
emitters in the Gaussian mixture model (GMM) used as state
vector for the inversion and accounting for observational er-
ror correlation in the assimilation of TROPOMI observa-
tions.

We report optimized sector-resolved emissions for the 23
individual countries in the region. We find that TROPOMI
observations can effectively constrain and individually sep-
arate emissions for most of the countries (19 out of 23).
The others have small emissions. Total anthropogenic emis-
sions in the region are 35 % higher than in the prior esti-
mate, reflecting increases in emissions from gas (+103 %),
waste (+53 %), and livestock (+49 %) but a decrease in oil
(−14 %).

We find that the top six emitting countries, including
Iran (5.3 (5.0–5.5) Tg a−1, where numbers in parenthe-
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Figure 12. Flared-gas volume in 2019 from major oil-/gas-producing countries. (a) Flared-gas volume derived from flare radiances detected
by the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument. (b) Ratios of flared-gas volume to gas production in 2019 normalized
by a value of 264 m3 flared gas per barrel of oil equivalent produced for Iraq.

ses are the range from our 36-member inversion ensem-
ble), Turkmenistan (4.4 (2.8–5.1) Tg a−1), Saudi Arabia (4.3
(2.4–6.0) Tg a−1), Algeria (3.5 (2.4–4.4) Tg a−1), Egypt (3.4
(2.5–4.0) Tg a−1), and Turkey (3.0 (2.0–4.1) Tg a−1) together
make up 62 % of the total anthropogenic emissions in the
region. Oil and gas are major contributors to these emis-
sions except for Turkey. Comparison of our results for these
countries to previous inversions using GOSAT satellite data
show some disagreements that may be related to the spar-
sity of GOSAT sampling. Most oil–gas emissions are from
the upstream (production) subsector, but some countries in-
cluding Turkmenistan, Saudi Arabia, and Iran have large gas
emissions from midstream (transmission) and downstream
(distribution) subsectors. We identify a number of emission
hotspots (> 18 Gg a−1 on the 25 km× 25 km grid) particu-
larly in Turkmenistan, Algeria, and Oman and offshore in the
Persian Gulf. These hotspots are related to underestimates of
oil–gas emissions in the national UNFCCC reports, indicat-
ing that they are not properly accounted for in the bottom-up
inventories compiled for these reports.

The IPCC (2006) recommends the use of emission factors
per unit oil or gas produced in the construction of bottom-up
emission inventories, but these emission factors vary by or-
ders of magnitude between countries, and we find that there
is in fact no significant relationship between emissions and
production rates at the country level. Well counts are a better
activity metric to predict emissions, but national-scale cor-

relations to emissions are still weak (r = 0.19–25), even in
combination with production rates (r = 0.26–0.28). The im-
portance and stochastic nature of local operating conditions
and management practices in determining oil–gas emissions
may stifle attempts to relate these emissions to simple activ-
ity metrics. This implies that top-down emission estimates
from atmospheric observations are essential for the oil–gas
sector and need to be considered part of the global stocktake
and UNFCCC reporting.

The potential to decrease methane emissions from the
dominant upstream component of the oil–gas sector can be
quantified by the methane intensity, defined by the Oil and
Gas Climate Initiative (OGCI) industry consortium as the
upstream oil–gas emissions per unit of gas production. The
methane intensity measures the fraction of methane lost to
the atmosphere rather than taken to market. The OGCI has
a target of reducing the methane intensity to 0.2 % world-
wide by 2025. We find that the methane intensities in almost
all countries of the Middle East and North Africa are much
larger, with the highest values in Iraq (17.6 (7.5–30.6) %),
followed by Oman (8.9 (4.5–13.4) %), Turkmenistan (4.6
(3.1–5.4) %), Libya (4.2 (2.6–8.2) %), the UAE (3.3 (2.3–
4.2) %), and Algeria (2.9 (1.8–4.4) %). These high values re-
flect leaky infrastructure combined with deliberate venting or
incomplete flaring of gas. By contrast, we find that methane
intensities in Kuwait (0.15 %), Saudi Arabia (0.14 %), and
Qatar (0.06 %) are lower than the OGCI target, demonstrat-
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Figure 13. Methane intensities in 2019 for major oil-/gas-
producing countries in the Middle East and North Africa. The
methane intensity is defined as the amount of methane emitted from
oil–gas upstream activities per unit of methane gas produced. Val-
ues are computed from our posterior emission estimates and EIA
gas energy production statistics (EIA, 2020), assuming an average
methane content of 92 % by volume. Vertical bars indicate the un-
certainty range inferred from our inversion ensemble. Dashed hori-
zonal line indicates the OGCI (2021) industry target of 0.2 % for
2025. Also shown is the mean and range of methane intensities from
US oil–gas fields (Lu et al., 2023).

ing that this target is achievable. These three countries appear
to achieve their low methane intensities through a combina-
tion of associated gas capture, modern infrastructure, and a
small number of high-production wells with centralized pro-
cessing. This suggests that modernization of infrastructure
combined with associated gas capture and improved man-
agement practices can effectively reduce methane intensities
elsewhere. Meeting the OGCI target of 0.2 % methane in-
tensity throughout the Middle East and North Africa would
decrease oil–gas upstream emissions in the region by 90 %
and decrease total anthropogenic methane emissions in the
region by 26 %, making a significant contribution toward the
Global Methane Pledge.
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version 2.02 are available at https://doi.org/10.5194/amt-
14-665-2021 (Lorente et al., 2021). The GOSAT
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plus CH4 ObsPack v4.0 data product is available at
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gas, and coal emissions from the GFEIv2 inventory are available
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