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Abstract. We use 2011–2019 aerosol optical depth (AOD)
observations from the Geostationary Ocean Color Imager
(GOCI) instrument over East Asia to infer 24 h daily sur-
face fine particulate matter (PM2.5) concentrations at a con-
tinuous 6× 6 km2 resolution over eastern China, South Ko-
rea, and Japan. This is done with a random forest (RF) algo-
rithm applied to the gap-filled GOCI AODs and other data,
including information encoded in GOCI AOD retrieval fail-
ure and trained with PM2.5 observations from the three na-
tional networks. The predicted 24 h GOCI PM2.5 concentra-
tions for sites entirely withheld from training in a 10-fold
cross-validation procedure correlate highly with network ob-
servations (R2

= 0.89) with a single-value precision of 26 %–
32 %, depending on the country. Prediction of the annual
mean values has R2

= 0.96 and a single-value precision of
12 %. GOCI PM2.5 is only moderately successful for diag-
nosing local exceedances of the National Ambient Air Qual-
ity Standard (NAAQS) because these exceedances are typi-
cally within the single-value precisions of the RF and also
because of RF smoothing of extreme PM2.5 concentrations.
The area-weighted and population-weighted trends of GOCI
PM2.5 concentrations for eastern China, South Korea, and
Japan show steady 2015–2019 declines consistent with sur-
face networks, but the surface networks in eastern China and

South Korea underestimate population exposure. Further ex-
amination of GOCI PM2.5 fields for South Korea identifies
hot spots where surface network sites were initially lack-
ing and shows 2015–2019 PM2.5 decreases across the coun-
try, except for flat concentrations in the Seoul metropolitan
area. Inspection of the monthly PM2.5 time series in Beijing,
Seoul, and Tokyo shows that the RF algorithm successfully
captures observed seasonal variations in PM2.5, even though
AOD and PM2.5 often have opposite seasonalities. The ap-
plication of the RF algorithm to urban pollution episodes in
Seoul and Beijing demonstrates high skill in reproducing the
observed day-to-day variations in air quality and spatial pat-
terns on the 6 km scale. A comparison to a Community Mul-
tiscale Air Quality (CMAQ) simulation for the Korean penin-
sula demonstrates the value of the continuous GOCI PM2.5
fields for testing air quality models, including over North Ko-
rea, where they offer a unique resource.

1 Introduction

Exposure to outdoor fine particulate matter (PM2.5; less than
2.5 µm in diameter) is a global public health issue, account-
ing for 8.9 million deaths in 2015 (Burnett et al., 2018). Be-
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yond mortality, short-term exposure to elevated PM2.5 lev-
els is associated with numerous adverse health outcomes,
including increased hospital admissions for respiratory and
cardiovascular issues (Dominici et al., 2006; Wei et al.,
2019). Long-term exposure is associated with neurodegen-
erative diseases such as dementia, Alzheimer’s disease, and
Parkinson’s disease (Kioumourtzoglou et al., 2016). High
spatiotemporal monitoring of PM2.5 concentrations to inform
population exposure is important for both air quality regula-
tion and epidemiological studies. Ground monitors can pro-
vide highly accurate measurements but have limited spatial
coverage. Here we show how geostationary satellite observa-
tions of aerosol optical depth (AOD) over East Asia from the
Geostationary Ocean Color Imager (GOCI) can be used with
a random forest (RF) machine learning (ML) algorithm to
provide continuous long-term reliable mapping of 24 h PM2.5
at a 6× 6 km2 spatial resolution.

The potential of satellites for high-resolution monitoring
of PM2.5 has long been recognized in the public health com-
munity (Liu et al., 2004; van Donkelaar et al., 2006). Satel-
lites retrieve AOD by the backscatter of solar radiation. The
MODIS sensors launched in 1999 on the NASA Terra and
Aqua satellites have been the main source of AOD data, with
global coverage twice a day at up to 1 km resolution (Remer
et al., 2005, 2013; Lyapustin et al., 2018). Early approaches
to relate AOD observations to surface PM2.5 used chemical
transport models (CTMs) to estimate local PM2.5 /AOD ra-
tios (Liu et al., 2004; van Donkelaar et al., 2006), with more
recent studies adding ancillary satellite data on the verti-
cal distribution of aerosol extinction (Geng et al., 2015; van
Donkelaar et al., 2016, 2019). Other approaches have used
PM2.5 network data to infer PM2.5 /AOD ratios (Wang and
Christopher, 2003), with statistical models based on meteo-
rological and land use predictor variables to enable spatial
extrapolation (Gupta and Christopher, 2009; Liu et al., 2009;
Kloog et al., 2012, 2014).

More recently, non-parametric machine learning models
have been developed to predict PM2.5 from satellite AOD ob-
servations, including neural networks (Li et al., 2017; Zang et
al., 2019), and RFs, including approaches that fuse both (Di
et al., 2019). RF has been applied to MODIS AOD to produce
high-resolution daily PM2.5 products for the USA (Hu et al.,
2017) and China (Guo et al., 2021). Others have used RF and
satellite AODs to produce monthly PM2.5 data over the North
China Plain (Huang et al., 2018), in addition to daily PM2.5
data in California (Geng et al., 2020) and Cincinnati, Ohio
(Brokamp et al., 2018).

Geostationary satellites are now dramatically increasing
the capability for the mapping of PM2.5 from space. The
GOCI instrument launched in 2010 by the Korea Aerospace
Research Institute (KARI) observes AOD eight times daily
at 0.5× 0.5 km2 pixel resolution over eastern China, the Ko-
rean peninsula, and Japan (Choi et al., 2018). The fine-pixel
hourly information is intrinsically valuable and also facili-
tates cloud clearing (Remer et al., 2012). GOCI AOD data

aggregated to 6× 6 km2 resolution have been used to esti-
mate PM2.5 in regional studies for the Yangtze River Delta
(She et al., 2020) and eastern China (Xu et al., 2015). Park
et al. (2019) find that PM2.5 can be inferred over the Ko-
rean peninsula with greater accuracy when using GOCI AOD
rather than sparser MODIS data. AOD products from the Ad-
vanced Himawari Imager (AHI) on board the Himawari-8
and Himawari-9 geostationary meteorological satellites over
East Asia have also been used to infer surface PM2.5 (Wang
et al., 2017; Chen et al., 2019).

AOD cannot be observed under cloudy conditions, and
AOD retrievals from satellites can also fail for other reasons,
including snow surfaces. Different methods have been used
to fill the data gaps and produce continuous data sets. Some
studies use chemical transport model (CTM) AODs when
satellite data are missing (Hu et al., 2017; Stafoggia et al.,
2019). Kianian et al. (2021) used a statistical interpolation
algorithm combining RF with the lattice kriging method to
infer missing AOD over the USA, while Di et al. (2019) used
an RF trained on gap-free covariates to fill in the gaps for
MODIS AOD. Yet, others first estimate PM2.5 using avail-
able AOD observations and then infer missing PM2.5 esti-
mates using a separate gap-filling model (Kloog et al., 2014;
She et al., 2020). Brokamp et al. (2018) show that AOD
retrieval failure is itself predictive of PM2.5, an insight we
leverage in this work.

Here we apply an RF algorithm to 2011–2019 GOCI AOD
data to construct a continuous dataset of 24 h PM2.5 concen-
trations at a 6× 6 km2 resolution for eastern China, South
Korea, and Japan trained with surface network data. This is
a larger spatial domain than has been attempted in previous
studies. We ensure continuity by using gap-filled AOD, cal-
culated by blending a CTM simulation with statistical inter-
polation, along with a parameter characterizing the length
scale of the interpolation as inputs to the RF algorithm.
This strategy maximizes the training set size and allows the
RF to determine a strategy to handle information encoded
by retrieval failure. The resulting gap-filled product predicts
PM2.5 with comparable skill when AOD observations are ab-
sent as when they are available. We characterize the error in
the RF-produced GOCI PM2.5 dataset for both 24 h and an-
nual concentrations and demonstrate the ability of the dataset
to capture spatial and day-to-day variability on urban scales.
We exploit the continuity of the dataset to determine trends
of PM2.5 air quality in East Asia over the past half decade.

2 Data and methods

2.1 Datasets

2.1.1 GOCI AODs

GOCI is on board the Korean Communication, Ocean,
and Meteorological Satellite (COMS) that was launched by
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KARI in June 2010 (Choi et al., 2012, 2016). The first ocean
color imager placed in geostationary orbit, GOCI covers a
2500× 2500 km2 domain centered on the Korean peninsula
at 36◦ N and 130◦ E, with 0.5× 0.5 km2 pixels observed ev-
ery hour from 00:30 to 07:30 UTC. AOD at 550 nm over
land is retrieved using the GOCI Yonsei aerosol retrieval
(YAER) version 2 (V2) algorithm at an aggregated 6× 6 km2

spatial resolution and 1 h temporal resolution (Choi et al.,
2018). Aggregation filters out pixels affected by sunglint or
clouds and the darkest 20 % and brightest 40 % pixels within
the 6× 6 km2 scene (Choi et al., 2018). We further aggregate
the hourly AOD measurements of AOD into a daily mean for
use in the RF.

Validation of the GOCI YAER V2 AOD with surface
measurements from the AERONET surface network shows
a high correlation (R = 0.91), a root mean squared error
(RMSE) of 0.16, and a mean bias (MB) of 0.01, with no sig-
nificant spatial variation across East Asia (Choi et al., 2018).
GOCI YAER V2 also reports a fine-mode fraction (FMF) and
a multiple prognostic expected error (MPEE) for the AOD,
but we find that they are not useful in our RF, as discussed
later. For comparison, we also calculate an RF trained on
the GOCI–AHI fusion AOD product of Lim et al. (2021).
The Advanced Himawari Imager (AHI) instruments on board
the Himawari-8 and Himawari-9 geostationary meteorologi-
cal satellites were launched in October 2014 and November
2016, respectively. AHI has a larger field of view than GOCI
but a shorter record.

2.1.2 PM2.5 network data

We use hourly PM2.5 data from operational air quality net-
works in eastern China, South Korea, and Japan and av-
erage them over 24 h and over the 6× 6 km2 GOCI AOD
grid to define targets for the RF algorithm. Data for eastern
China are from the National Environmental Monitoring Cen-
ter (https://quotsoft.net/air/, last access: 25 February 2022),
including 443 sites within the GOCI observing domain start-
ing in May 2014 and increasing to 596 sites by 2019. Follow-
ing Zhai et al. (2019), we remove values with more than 24
consecutive repeats in the hourly time series as likely being
in error. Data for South Korea are from the AirKorea sur-
face network of 123 sites (https://www.airkorea.or.kr/, last
access: 25 February 2022), starting in January 2015, and in-
creasing to 298 sites by 2019. Data for Japan are from 1054
sites reported by the Japanese National Institute for Envi-
ronmental Studies (NIES) for 2011–2017 (https://www.nies.
go.jp/igreen/tj_down.html, last access: 25 February 2022)
and by the real-time Atmospheric Environmental Regional
Observation System (AEROS) portal for 2018–2019 (Sora-
mame; http://soramame.taiki.go.jp/DownLoad.php, last ac-
cess: 25 February 2022).

2.1.3 Meteorological and geographical predictor
variables

We use hourly meteorological data from the ERA5 global re-
analysis, with a resolution of 30× 30 km2 (Hersbach et al.,
2020), as input predictor variables for the RF algorithm. For
this purpose, we aggregate the data to 24 h averages and al-
locate them to 6× 6 km2 GOCI grid cells by bilinear inter-
polation. We consider boundary layer height, 2 m air tem-
perature and relative humidity (RH), 10 m meridional and
zonal winds, and sea level pressure as potential meteorolog-
ical predictor variables. We also include latitude, year, day
of the year (1–366), and nation (eastern China, South Korea,
or Japan) as geographical predictor variables. We considered
the 2015 population density (CIESIN, 2018) as a potential
predictor variable but found that it was not useful, as dis-
cussed in Sect. 3.2.

Figure 1 shows the mean distributions of GOCI AOD and
surface network PM2.5 for 2011–2019 or for the more lim-
ited durations of their records (2014–2019 for eastern China
PM2.5; 2015–2019 for South Korea PM2.5). The PM2.5 net-
works are extensive but coverage is nevertheless sparse and
often limited to large urban areas, as illustrated by the mag-
nified inset for South Korea. We find that only 1.0 % of
GOCI 6× 6 km2 grid cells have PM2.5 observations in east-
ern China, 7.4 % in South Korea, and 7.9 % in Japan. This
geographic limitation in the PM2.5 networks emphasizes the
value of continuous coverage from the AOD data.

2.2 AOD gap-filling

Figure 2 shows the percentage of days with at least one suc-
cessful hourly GOCI AOD retrieval on the 6× 6 km2 re-
trieval grid. There are substantial gaps in the record, mostly
reflecting clouds and also snow cover in winter (Choi et al.,
2018). We seek to fill in these gaps to produce a continuous
daily data set while accounting for the associated errors and
leveraging information implicitly encoded in retrieval fail-
ure. We fuse the following two strategies according to the
availability of nearby AOD retrievals: an inverse-distance-
weighted (IDW) interpolation AODIDW of nearby retrievals
(Shepard, 1968) and a bias-corrected monthly AODGC from
the GEOS-Chem CTM, as follows:

AOD= αAODIDW+ (1−α)AODGC, (1)

where α is a weighting factor that depends on the distance
from nearest retrievals. GEOS-Chem is a widely used CTM
for inferring PM2.5 from satellite AOD data (Liu et al., 2004;
van Donkelaar et al., 2006, 2016, 2019; Geng et al., 2015).
Here we use scaled monthly mean GEOS-Chem AODs from
a simulation by Zhai et al. (2021) for 2016 in East Asia with
a 0.5◦× 0.625◦ resolution, bias corrected to the annual mean
GOCI AODs on the 6× 6 km2 grid. In this way, we obtain
a spatial distribution of monthly mean AODGC values for
2011–2019 for use in Eq. (1).
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Figure 1. Mean aerosol optical depth (AOD) and surface network PM2.5 concentrations over the Geostationary Ocean Color Imager (GOCI)
viewing domain, 2011–2019. Panel (a) shows the mean GOCI AOD data on the 6× 6 km2 grid. Panel (b) shows the mean surface network
PM2.5 data for eastern China (starting in May 2014), South Korea (starting in January 2015), and Japan, using large data symbols for
visibility. A magnified inset for South Korea shows the surface network observations with symbols corresponding to the 6× 6 km2 grid of
the GOCI data. A log scale is used for the color bar.

Figure 2. Percentage of days in 2011–2019 with at least one suc-
cessful hourly retrieval of AOD on the 6× 6 km2 grid. Panel (a)
shows year-round statistics, while panel (b) shows winter months
(December–February; DJF) only.

We calculate the weighting factors α used in Eq. (1) via
the Gaspari–Cohn function, a fifth-order piecewise polyno-
mial with a radial argument r (Gaspari and Cohn, 1999).
The Gaspari–Cohn function resembles a Gaussian distribu-
tion but with compact support that takes on a maximum value
of 1 for r = 0 and a minimum value of 0 for r ≥ 2. We define
r = l/c for a given 6× 6 km2 grid cell and day to be the dis-
tance l from the midpoint of the grid cell to that of the nearest
observed grid cell, normalized by a spatial correlation length
scale, c, determined from available AOD observations in and
around that grid cell. We find that the value of c ranges from
110 km to 170 km over our domain.

2.3 Random forest algorithm

Table 1 lists the predictor variables included in the RF to in-
fer 24 h PM2.5 as dependent variable. RF is an ensemble ma-
chine learning method, where many individual decision trees
are fit to the training data and vote on an output value, with
the average value taken as best estimate (Breiman, 2001).

Decision trees are fit recursively to the predictor variable.
Suppose we have a collection of N data elements i ∈ (1,N),
denoted as xi , each composed of m predictor variables (xi ∈
Rm) and a corresponding list of N labels yi that we would
like to learn. In our case, yi denotes the observed PM2.5
concentrations from the surface networks averaged on the
6× 6 km2 grid, and N denotes the number of these observa-
tions. The algorithm works by splitting the data into left and
right subsets, L and R, at an optimum split point determined
from the predictor variables in xi (Pedregosa et al., 2011).
The optimum split point is defined as the one that minimizes
the impurity G, as follows:

G(L,R)= β ·MSE(L)+ (1−β) ·MSE(R), (2)

where β represents the fraction of data in the subset L, and
MSE represents the mean squared error of each of the sub-
sets, as follows:

MSE(X)=
1
n

∑
i
(yi − y)

2, (3)

where y is the mean of the target labels within a given subset
X, and n is the number of elements in that subset. From there,
the same algorithm is recursively applied to the left and right
subsets L and R until the tree is grown. We follow the advice

Atmos. Meas. Tech., 15, 1075–1091, 2022 https://doi.org/10.5194/amt-15-1075-2022



D. C. Pendergrass et al.: Continuous mapping of fine particulate matter (PM2.5) air quality in East Asia 1079

Table 1. Random forest predictor variables for 24 h PMa
2.5.

GOCI gap-filled AOD 8 h average AOD at 550 nm
observationsb wavelength

α from Eq. (1)

Meteorologyc Boundary layer height (m)
10 m meridional wind (m s−1)
10 m zonal wind (m s−1)
2 m temperature (K)
2 m relative humidityd (%)
Sea level pressure (Pa)

Metadata Country dummy variablese

Latitude
Day of year
Year

a The RF algorithm predicts continuous 24 h PM2.5 on a 6× 6 km2 grid for
eastern China, South Korea, and Japan after training with PM2.5 surface
network data. b The 8 h average 550 nm AODs on the 6× 6 km2 grid
retrieved with the YAER V2 algorithm (Choi et al., 2018). c ECMWF
ERA5 fields (Hersbach et al., 2020) at 30× 30 km2 spatial resolution and
hourly temporal resolution interpolated bilinearly to the GOCI grid and
averaged over 24 h. d Estimated from temperature and dew point using the
August–Roche–Magnus approximation (Alduchov and Eskridge, 1996).
e The three variables that, for each of eastern China, South Korea, and
Japan, have a value of 1 if a grid cell is within those national borders and of
0 otherwise.

of Hastie et al. (2009) and grow trees until the data are fully
classified (each leaf contains only one value).

Due to the recursive training structure, decision trees are
sensitive to the data on which they are trained because a
change in one split point changes the composition of all its
child nodes. Individual decision trees thus have high error
variance but no inherent bias. It follows that averaging many
individual and uncorrelated trees should yield a low vari-
ance, low bias, prediction. We construct 200 trees in paral-
lel and reduce the correlation between them through a bag-
ging procedure; for each of the 200 decision trees in the RF,
we sample the input data with replacement to form a new
dataset of the same dimensions and then grow a decision tree
from this bootstrapped data (Breiman, 2001). Because of the
high input sensitivity, a wide variety of decorrelated trees are
grown. The predictions of each individual tree are averaged
to yield the prediction of the RF. We fit our RF using the
RandomForestRegression class in the Python module Scikit-
learn (Pedregosa et al., 2011). We attempted to further decor-
relate the trees by following Breiman (2001) and calculating
the split points of each individual tree using only a random
subset of them predictor variables; however, a sensitivity test
we performed showed only minor differences with the base
case, and therefore, we follow Geurts et al. (2006) in consid-
ering all predictor variables in the training process.

We evaluate how the RF generalizes to predictions for
the full 6× 6 km2 domain via a 10-fold cross-validation.
For each fold of the cross-validation, we leave out a ran-
domly selected 10 % of PM2.5 network sites (averaged on

the 6× 6 km2 grid if needed) from each country. These 10 %
represent the test set. Because we perform the validation 10
times, each grid cell is in the test set exactly once. We com-
pare the predicted PM2.5 to withheld observed PM2.5 us-
ing four metrics, i.e., root mean square error (RMSE), the
RMSE divided by mean observed PM2.5 (relative RMSE or
RRMSE), the coefficient of variation (R2), and the mean bias
computed by averaging the difference between predicted and
observed PM2.5 (MB).

An outcome of interest is the ability of our predictions to
capture exceedances of National Ambient Air Quality Stan-
dards (NAAQS). We categorize each prediction within the
test sets into one of the following four classes: true posi-
tives (TPs), where both predicted and observed PM2.5 ex-
ceed the NAAQS threshold, true negatives (TNs), where nei-
ther exceed the threshold, false positives (FPs), where an ex-
ceedance is predicted but not observed, and false negatives
(FNs), where an exceedance is observed but not predicted
(Brasseur and Jacob, 2017; Cusworth et al., 2018). We use
these classes to compute three overall prediction grades. The
first, percent of detection (POD), gives the fraction of ob-
served exceedances that were successfully predicted, as fol-
lows:

POD=
6TP

6TP+6 FN
. (4)

The second, false alarm ratio (FAR), gives the fraction of
predicted exceedances that did not occur as follows:

FAR=
6 FP

6TP+6 FP
. (5)

The third, equitable threat score (ETS), compares how well
the prediction does relative to random chance, as follows:

ETS=
6TP−β

6TP+6 FP+6 FN−β
, (6)

where β is the number of true positives obtained by random
chance, as follows:

β =
(6TP+6 FP) · (6TP+6 FN)
6TP+6TN+6 FP+6 FN

. (7)

ETS is 1 for perfect prediction skill and 0 for no better or
worse than chance.

Predictor variable selection is an important task in imple-
menting an RF, as the addition of non-informative variables
can decrease performance. Unlike linear regression, which
can naturally ignore unhelpful predictors, irrelevant data can,
by chance, aid in minimizing impurity G at some stage in
the optimization process, making all subsequent splits sub-
optimal. The six meteorological variables given in Table 1
are standard in the AOD /PM2.5 prediction (e.g., Kloog et
al., 2014; Li et al., 2017), while the four spatiotemporal vari-
ables (location dummies, latitude, year, and day of the year)
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and the retrieval gap-filling parameter α proved to be infor-
mative in sensitivity tests. In addition to the predictor vari-
ables in Table 1, we considered as additional variables the
population density, the GOCI fine mode fraction (FMF), and
the GOCI multiple prognostic expected error (MPEE), but
we found that they worsened accuracy of the fit, and so we
did not retain them. Because population density worsened the
fit, we did not include other spatially varying but temporally
fixed land use variables such as road data, elevation, or emis-
sions. We also compared RFs trained on GOCI AOD and on
GOCI–AHI-fused AOD and found no significant difference
in the fitting of PM2.5. We, therefore, use the GOCI AOD
product because of its longer record.

3 Results and discussion

3.1 Accuracy and precision of RF predictions

Figure 3 shows scatterplots, color-coded by count, compar-
ing surface observations of 24 h and annual mean PM2.5
to the predicted GOCI PM2.5 values in grid cells whose
records are entirely withheld from training in the cross-
validation procedure. GOCI PM2.5 values for the annual
mean are obtained by averaging the 24 h predictions. Ta-
ble 2 gives comprehensive GOCI PM2.5 evaluation statistics
for East Asia and for each country. The 24 h predictions for
East Asia have a negligible mean bias of 0.23 µg m−3 (an-
nual; 0.22 µg m−3), though the RF underpredicts PM2.5 at
the high tail of the distribution; we will return to that issue
later in the context of NAAQS exceedances. The root mean
square error (RMSE) between observed and predicted 24 h
PM2.5 is 8.8 µg m−3 (annual; 3.3 µg m−3), corresponding to
a relative RMSE (RRMSE) of 37 % (annual; 14 %), as de-
fined in Sect. 2.3. The prediction captures 89 % of the ob-
served 24 h variance (R2

= 0.89) and 96 % of annual variance
(R2
= 0.96). These results compare favorably to previous re-

constructions of PM2.5 from satellite AOD data. For exam-
ple, a 1 km 2000–2015 continental USA product and 3 km
2015–2016 eastern China product have cross-validations R2

of 0.86 and 0.87, respectively, for daily PM2.5 (Di et al.,
2019; Hu et al., 2019), while a global 0.01◦ 1998–2018 prod-
uct and a 0.1◦ 2000–2016 product for China have cross-
validated R2 of 0.90–0.92 and 0.77, respectively, for annual
PM2.5 (Hammer et al., 2020; Xue et al., 2019). R2 for the
annual mean PM2.5 in South Korea is relatively low (0.41),
which can be explained by the weak dynamic range of ob-
served annual PM2.5 in the country (Fig. 1), as will be dis-
cussed later in this section.

Our gap-filling strategy does not introduce bias for days
without GOCI observations (and with AOD inferred, instead,
from Eq. 1). Figure S1 in the Supplement shows that sur-
face network PM2.5 has distinct distributions on days where
AOD retrieval fails compared to when AOD retrieval suc-
ceeds, a pattern successfully reproduced by GOCI PM2.5. Ta-

Table 2. Error statistics for fitting of PM2.5 data by the RF
algorithm∗.

RMSE RRMSE R2 MB MBnr
(µg m−3) (µg m−3) (µg m−3)

24 h PM2.5

Overall 8.8 37 % 0.89 0.23 0.23
Eastern China 15 32 % 0.85 0.49 0.53
South Korea 6.4 26 % 0.82 0.16 0.10
Japan 3.6 27 % 0.79 0.12 0.13

Annual PM2.5

Overall 3.3 14 % 0.96 0.22
Eastern China 5.6 12 % 0.86 0.53
South Korea 2.9 12 % 0.41 0.24
Japan 1.6 12 % 0.70 0.094

∗ Comparison statistics between GOCI and surface network PM2.5 for the grid cells in each of
eastern China, South Korea, and Japan are completely withheld from the RF training process in
the cross-validation procedure. Statistics shown are for the root mean square error (RMSE),
relative RMSE (RRMSE), coefficient of variation (R2), mean bias (MB), and mean bias on days
where AOD retrieval fails (MBnr).

ble 2 shows that the mean bias statistic on days where AOD
retrieval fails is similar to the whole population. This sug-
gests that the RF algorithm is able to successfully exploit the
information encoded in AOD retrieval failure in making a
PM2.5 prediction, a phenomenon also noted by Brokamp et
al. (2018).

One potential application of PM2.5 monitoring from space
would be to diagnose exceedances of national ambient air
quality standards (NAAQS) at locations without network
sites. Table 3 shows the NAAQS for 24 h and annual PM2.5
for the three countries and the ability of GOCI PM2.5 to
diagnose NAAQS exceedances in grid cells excluded from
the training process in the cross-validation procedure. The
24 h exceedances correspond to the high tails of the distri-
butions but annual exceedances are much more widespread.
The POD column shows the percent of true positives success-
fully detected, while the FAR shows the rate of false positives
(defined in Sect. 2.3). The POD for 24 h exceedances ranges
from 47 %–78 % by country (16 %–21 % – FAR). PODs are
higher for annual exceedances, but that reflects the higher
observed frequency of these exceedances. The ETS values
ranging from 0.43–0.63 indicate that the model captures ex-
ceedances with much better skill than random guessing.

The main difficulty for GOCI PM2.5 in predicting NAAQS
exceedances is that many of those exceedances fall within
the precision of individual predictions. This is illustrated in
Fig. 4, with the cumulative probability density function (pdf)
of the 24 h and annual mean PM2.5 concentrations in eastern
China, South Korea, and Japan representing the same with-
held data from the cross-validation as in Tables 2 and 3. The
24 h RRMSE of 26 %–32 %, depending on country (Table 2)
is shown as the gray envelope and is relatively flat across the
distribution. The prediction of NAAQS exceedances within
that uncertainty envelope is limited by the precision of the al-
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Figure 3. The ability of the random forest algorithm to predict 24 h (a) and annual mean PM2.5 (b) in East Asia. Scatterplots depict the
relationship between GOCI and surface network PM2.5 at grid cells withheld from training in the cross-validation. The plots are two-
dimensional histograms, where the pixel color corresponds to the count of observation/prediction correspondences within the corresponding
bin on a logged scale. The identity line is plotted in black. For the annual mean PM2.5, grid cells with fewer than 80 % of PM2.5 observation
days in a given year are removed to avoid biasing the average values. For panel (a), 0.002 % of the data are not shown, as they exceed the
plot range; all data are shown in panel (b).

Table 3. Ability of the RF algorithm to diagnose exceedances of air quality standardsa.

NAAQS Exceedance PODd FARe ETSf

(µg m−3)b frequencyc

Observed RF

24 h PM2.5

Eastern China 75 16 % 15 % 78 % 16 % 0.63
South Korea (old NAAQS) 50 5.9 % 4.2 % 57 % 21 % 0.47
South Korea (new NAAQS) 35 19 % 17 % 73 % 20 % 0.55
Japan 35 1.6 % 0.91 % 47 % 17 % 0.43

Annual PM2.5

Eastern China 35 77 % 83 % 97 % 9.2 % 0.54
South Korea (old NAAQS) 25 40 % 44 % 67 % 39 % 0.23
South Korea (new NAAQS) 15 100 % 100 % 100 % 0 % NA
Japan 15 24 % 20 % 68 % 20 % 0.49

a Calculated using sites withheld from training in the cross-validation procedure. b National Ambient Air Quality
Standards (NAAQS), which are specific to each country. We show results for the class 2 NAAQS in eastern China and for
both pre-2018 (old) and post-2018 (new) NAAQS for South Korea because all observed grid cells exceed the new annual
NAAQS of 15 µg m−3. c Percentage of site days (24 h standard) or site years (annual standard) exceeding the NAAQS.
d Percent of detection (POD) defined as the percentage of exceedances successfully detected. e False alarm ratio (FAR)
defined as the percentage of predicted exceedances that did not occur. f Equitable threat score (ETS), which is defined as
the ability of the RF to predict exceedances beyond random chance.

gorithm. All of the 24 h exceedances in Japan are within that
envelope, as are most of the exceedances in eastern China and
Korea. China has the largest fraction of exceedances beyond
the RRMSE of the GOCI PM2.5 and, therefore, the best pre-
diction success. An additional, though smaller, cause of bias
is that GOCI PM2.5 underestimates the high tail of the pdf,
as is apparent in Fig. 4, which explains in particular why we
achieve a better FAR than POD for 24 h PM2.5 in South Ko-

rea and Japan. Our worst NAAQS prediction performance is
for annual PM2.5 in South Korea for the old 25 µg m−3 stan-
dard because most of the distribution is within the RRMSE
envelope. Additionally, the already small dynamic range of
the surface network annual PM2.5 (black dots) is underesti-
mated by the GOCI PM2.5 (blue dots). These culminate in a
GOCI PM2.5 estimate with good RMSE but low R2.
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Figure 4. Cumulative probability density functions (pdf’s) of 24 h and annual mean PM2.5 concentrations in eastern China, South Korea, and
Japan. Surface network PM2.5 (black) is compared to GOCI PM2.5 (colored) taken from the cross-validation. The gray envelope represents
the relative root mean square error (RRMSE) of the RF algorithm, as given in Table 2, measuring the predictive capability of the algorithm
for individual events. The NAAQS for each country is shown as the horizontal line, with both the pre-2018 and post-2018 NAAQS shown for
South Korea. The left panel scales are log–log, while the right panel scales are linear, and the y-axis scales vary for the different countries.

We experimented with several modifications to the RF al-
gorithm to improve the prediction of NAAQS exceedances
but with no success. These tests included training separate
RFs for each of the three countries, training annual PM2.5
predictions on annual (rather than 24 h) PM2.5 data, directly
predicting NAAQS exceedances by setting the learned label
to be true if a day (year) is above the 24 h (annual) NAAQS
for a given country, and applying different weights to the
data so that the high tail is oversampled in the training pro-
cess. None of these tests yielded significant improvements.
Smoothing of the tails in RFs is a well-recognized problem
(Zhang and Lu, 2012). Following Zhang and Lu (2012), we
attempted to train RFs to predict and correct the residuals
but found this to be ineffective. Part of this tail smoothing
could also result from the underlying GOCI AOD land prod-
uct, which has a negative bias (−0.02) for high AODs and a
positive bias (+0.02) for low AODs (Choi et al., 2018).

3.2 PM2.5 temporal trends and spatial distributions

Figure 5 shows long-term trends of annual PM2.5 for each
country, as measured by the PM2.5 surface network and as
inferred in the GOCI PM2.5 for both areal- and population-
weighted means. We do not include GOCI PM2.5 for years
before the networks became available (and, hence, when
the RF could be trained) because of concern over extrapo-
lation bias. The PM2.5 networks show decreasing trends in
all three countries, and these trends are consistent with the
GOCI PM2.5 for both areal- and population-weighted means,
demonstrating that the trends reported by the PM2.5 networks

are representative of the countries. However, the PM2.5 net-
works in eastern China and South Korea underestimate the
population-weighted means. Moreover, trends in South Ko-
rea and eastern China become flat between 2018 and 2019
(with a slight population-weighted increase in South Korea).
This could possibly reflect interannual meteorological vari-
ability (Zhai et al., 2019; Koo et al., 2020) but also an in-
crease in oxidants producing secondary aerosol (Huang et al.,
2021). Figure S2 shows maps of annual GOCI PM2.5 across
the entire study domain.

Figure 6 shows the changes in annual mean PM2.5 con-
centrations over South Korea between 2015 and 2019 as ob-
served from the national network and as inferred from GOCI.
We focus on South Korea here because it demonstrates how
GOCI PM2.5 adds considerable information to a region that
already has relatively good network coverage, including the
detection of PM2.5 hot spots missing from the network, such
as the Iksan region on the west coast of South Korea in 2015
that was subsequently added to the network by 2019. Fig-
ures S3 and S4 show analogous maps for China and Japan,
respectively.

Figure 7 depicts the relative 2015–2019 trends of PM2.5
concentrations in South Korea derived from a linear regres-
sion applied to the annual GOCI PM2.5 in each 6× 6 km2

grid cell. Such a spatially resolved trend analysis is uniquely
enabled by the GOCI coverage. We find decreases across
the country, except in the Seoul metropolitan area, which
mostly shows no significant trend except for a few pixels
in Incheon. These results are consistent with the spatial pat-
terns calculated from AirKorea data by Yeo and Kim (2019),
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Figure 5. Trends in the annual mean PM2.5 concentrations for east-
ern China, South Korea, and Japan. Trends determined from the
national surface PM2.5 networks (dashed black line) averaged over
6× 6 km2 grid cells, requiring at least 80 % of data for all years
plotted, are compared to GOCI PM2.5 trends inferred by the ran-
dom forest (RF) algorithm with continuous temporal and spatial
coverage on the 6× 6 km2 grid and weighted either by area (solid
colored line) or by population (dashed colored line). Here we use
an RF trained on all the data. The gridded population data are from
CIESIN (2018). The national PM2.5 networks include 413 continu-
ously observed grid cells in eastern China, 74 in South Korea, and
307 in Japan. Trends are initialized at the onset of the surface net-
work for complete years of data; due to the unavailability of the
early months of the year, 2011 is discarded for Japan, and 2014 is
discarded for eastern China.

who found 2015–2018 decreases in Incheon but not Seoul or
the surrounding Gyeonggi province. Despite the insignificant
changes in Seoul, substantial PM2.5 decreases are found over
other large urban areas including Busan, Ulsan, Daegu, and
Gwangju. The three rapidly decreasing spots on the south-
ern coast are Gwangyang, Sacheon, and Changwon, which
house industrial complexes related to the South Korean ship-
building industry that has recently declined (Jung-a, 2016).
Figure S5 shows absolute 2015–2019 trends of GOCI PM2.5
concentrations across the entire study domain and demon-
strates that the North China Plain has the largest overall
PM2.5 reductions.

AOD and PM2.5 in East Asia tend to have opposite sea-
sonalities driven by boundary layer depth and RH (Zhai et
al., 2021). Figure 8 compares GOCI and the surface net-
work monthly mean PM2.5 in the Beijing, Seoul, and Tokyo
metropolitan areas, with predictions coming from withheld
data in the 10-fold cross-validation. Correspondence be-

Figure 6. Annual mean PM2.5 concentrations in South Korea in
2015 and 2019. GOCI PM2.5 (a, b) inferred from an RF trained
on all available data are compared to AirKorea network observa-
tions (c, d). Network observations are shown only if at least 80 %
of the year was observed.

Figure 7. The 2015–2019 trends per year in PM2.5 concentrations
across South Korea. The trends are obtained by ordinary linear re-
gression of the annual mean GOCI PM2.5 in each 6× 6 km2 grid
cell, with significant regression slopes (p < 0.05) where the RF is
trained on all the available data. Grid cells with insignificant trends
are plotted in gray.

tween GOCI and the network PM2.5 may be tighter than the
nationwide annual means plotted in Fig. 5 because these ur-
ban areas are well observed. We see that the RF algorithm
fully captures the observed seasonality in PM2.5, although
some observed monthly spikes are underestimated. The fig-
ure illustrates the lack of trend in the Seoul metropolitan
area over 2015–2019 but also shows that winter and summer
PM2.5 in the region have opposite and roughly equal trends,
with winter growing more polluted while summers become
cleaner.
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Figure 8. Monthly PM2.5 concentrations in the Beijing, Seoul, and
Tokyo metropolitan areas. GOCI PM2.5 inferred from the RF al-
gorithm for totally withheld sites in the cross-validation are com-
pared to network observations. Beijing is defined by the namesake’s
province boundary, Seoul by the Seoul and Incheon boundaries, and
Tokyo is defined as the Ibaraki, Saitama, Chiba, Tokyo, Kanagawa,
and Yamanashi prefectures.

3.3 Urban-scale pollution events

We examine here the ability of GOCI PM2.5 to capture the
spatial and temporal variability of PM2.5 pollution events on
urban scales. Figure 9 shows a map of GOCI PM2.5 – pro-
duced by a RF trained on all the data, with the surface net-
work PM2.5 overlaid – across the Seoul metropolitan area
on 24–29 May 2016, corresponding to a severe pollution
event sampled during the Korea–United States Air Quality
(KORUS-AQ) field campaign (Crawford et al., 2021). The
dense PM2.5 network for Seoul shows large variability at the
sub-6× 6 km2 scale that GOCI does not resolve. However,
GOCI PM2.5 captures most of the variability in the network
data aggregated on the 6× 6 km2 grid (R2

= 0.74). It also
successfully captures the day-to-day variability during the
event.

Figure 10 shows an additional test of the RF algorithm
with one of the most severe pollution events in the record,
the 16–21 December 2016 Beijing winter haze episode. The
24 h PM2.5 concentrations exceeded 400 µg m−3 at some of
the network sites. While there is a tight correspondence be-
tween the GOCI and surface network 24 h PM2.5 for Bei-
jing grid cells (R2 range of 0.74–0.99), the network observa-
tions are on average 20 µg m−3 higher than the GOCI PM2.5.

The difference is most pronounced at the December 21 con-
centration peak which has mean observed value 396 µg m−3

to the predicted 348 µg m−3. This reflects the RF smoothing
and AOD underestimate for the high tail of the distribution,
as previously illustrated in Fig. 4. It nevertheless illustrates
the ability of GOCI, combined with our gap-filling method,
to capture severe winter haze episodes that are particularly
challenging to observe from space.

3.4 Regional air quality model evaluation

Regional air quality model predictions of PM2.5 are typi-
cally evaluated with observations from surface network sites,
but the spatially continuous GOCI PM2.5 fields offer more
extensive coverage and, hence, a broader opportunity for
model evaluation. We demonstrate this capability here with
the Community Multiscale Air Quality Modeling System
(CMAQ, version 4.7.1) simulations for the Korean penin-
sula including both South and North Korea at 9 km resolution
(Bae et al., 2018, 2021). There are no surface PM2.5 data in
North Korea to train the RF, so we use the South Korea cate-
gorical variable to generate the GOCI PM2.5 fields there.

The simulation for South Korea was conducted for 2015–
2019 using emissions from the Clean Air Policy Support Sys-
tem (CAPSS) 2016 (Choi et al., 2020) for South Korea and
KORUSv5 (Woo et al., 2022) for outside South Korea. The
simulation for North Korea was conducted for 2016 using
emissions from the Comprehensive Regional Emissions in-
ventory for Atmospheric Transport Experiment (CREATE)
2015 (Woo et al., 2020) and CAPSS 2013. Natural aerosols,
including sea salt and mineral dust, are included. To prepare
the boundary conditions, a coarse domain at 27 km horizon-
tal grid resolution covering northeastern Asia was used.

Figure 11 illustrates the increased capability for model
evaluation in South Korea enabled by the GOCI PM2.5 fields.
The bottom row shows the mean 2015–2019 PM2.5 concen-
trations in CMAQ compared to the AirKorea network and
to GOCI PM2.5, and the top row shows comparison scatter-
plots. The top left panel compares the CMAQ simulation to
2015–2019 mean PM2.5 observations from the 398 AirKo-
rea network sites. The top middle panel compares the GOCI
PM2.5 to the same AirKorea network data, showing excellent
agreement. The GOCI PM2.5 fields provide 1353 points for
South Korea on the 9× 9 km2 CMAQ grid, and the top right
panel shows the resulting increase in capability for evaluation
of the CMAQ simulation. It shows, in particular, that CMAQ
underestimates PM2.5 in coastal environments, possibly be-
cause of unaccounted ship emissions.

Figure 12 evaluates the CMAQ simulation with the GOCI
PM2.5 fields over North Korea. Unlike in South Korea, there
are no observation sites in North Korea and GOCI PM2.5 of-
fers the only opportunity for local evaluation. CMAQ and
GOCI PM2.5 show dramatically different patterns. The high-
est PM2.5 in CMAQ is in the Pyongyang capital region, while
GOCI shows highest values in the north–central region. The

Atmos. Meas. Tech., 15, 1075–1091, 2022 https://doi.org/10.5194/amt-15-1075-2022



D. C. Pendergrass et al.: Continuous mapping of fine particulate matter (PM2.5) air quality in East Asia 1085

Figure 9. The 24 h PM2.5 concentrations during a pollution event in Seoul–Incheon (24–29 May 2016). GOCI PM2.5 inferred from the RF
algorithm (background; 6× 6 km2 grid scale) trained on all available data is compared to observations from the AirKorea surface network
(circles).

Figure 10. Same as Fig. 9 but for a pollution event in Beijing on 16–21 December 2016.

lack of reliable emission inventories for North Korea makes
it difficult to arbitrate this difference. The RF is not trained
for North Korea, which might lead to positive biases because
the AOD /PM2.5 ratio modeled in the Zhai et al. (2021)
GEOS-Chem simulation is higher over North Korea outside
the mountainous east (range of 0.010–0.013 m3 µg−1) than
over South Korea (0.008–0.010 m3 µg−1). However, the dif-
ference could also be explained by missing emissions in the
inventory. Further evaluation could be done with border sites
in South Korea and northeastern China. China Ministry of

Ecology and Environment (MEE) sites along the border are
consistent with high PM2.5 in north–central North Korea.

4 Conclusions

We used 2011–2019 geostationary aerosol optical depth
(AOD) observations from the GOCI satellite instrument, in
combination with a random forest (RF) machine learning
algorithm trained on air quality network data, to produce a
continuous 24 h PM2.5 data set for eastern China, South Ko-
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Figure 11. Mean PM2.5 concentrations in South Korea in 2015–2019 as simulated by CMAQ, measured at the AirKorea sites, and inferred
from GOCI. Panels (a), (b), and (c) show scatterplots comparing the CMAQ and GOCI PM2.5 fields to the AirKorea measurements (398
sites) and CMAQ to GOCI PM2.5 on the 9× 9 km2 CMAQ grid (1353 grid cells to compare). Panels (d), (e), and (f) show maps of the mean
2015–2019 concentrations.

Figure 12. Mean PM2.5 concentrations in North Korea in 2016, as simulated by CMAQ and as represented by the GOCI PM2.5 product,
assuming that South Korea is a categorical variable. Panel (b) shows surface PM2.5 concentrations from the AirKorea and China Ministry of
Ecology and Environment (MEE) networks.

rea, and Japan at 6× 6 km2 resolution. The resulting gap-free
GOCI PM2.5 product complements the air quality networks
that cover only 1 % of 6× 6 km2 grid cells in eastern China,
7 % in South Korea, and 8 % in Japan. It provides a general
dataset for PM2.5 mapping to serve regional pollution analy-
sis, air quality monitoring, and public health applications.

We trained the RF algorithm on gap-filled AODs from the
GOCI instrument and a suite of 12 meteorological, geograph-
ical, and temporal predictor variables. Gap-filling of AODs
was done by a weighted combination of nearest-neighbor
data and chemical transport model fields, with the weight

serving as an additional predictor variable. The RF algorithm
is successfully able to exploit information encoded in AOD
retrieval failure to produce a continuous product. Testing of
the RF algorithm by the prediction of withheld network sites
shows single-value precisions in each country of 26 %–32 %
for 24 h PM2.5 and 12 % for annual mean PM2.5, with neg-
ligible mean bias. Accuracy statistics for PM2.5 inferred on
grid cells with no AOD retrieval (i.e., estimated using Eq. 1)
show similar accuracy statistics to that of the entire popula-
tion, indicating that the gap-filling procedure does not bias
the results. The algorithm has only moderate success at pre-
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dicting NAAQS exceedance events because most of these
events are within the single-value precision and also because
of some smoothing of the extreme high tail of the PM2.5 fre-
quency distribution.

We compared the continuous 24 h GOCI PM2.5 fields to
spatial and temporal patterns observed at the national net-
work sites. National trends of PM2.5 inferred from GOCI
and weighted by area or population are consistent with
those observed at network sites (2015–2019 in eastern China
and South Korea; 2011–2019 in Japan), confirming that the
trends observed at these sites are representative. However,
the network sites in eastern China and South Korea under-
estimate population exposure. The GOCI PM2.5 fields over
South Korea show PM2.5 hot spots missing in the early
AirKorea network (2015) that are confirmed by subsequent
addition of sites to the network (2019). The spatial distribu-
tion of GOCI PM2.5 trends in South Korea shows decreases
everywhere, except in the Seoul metropolitan area where
trends are flat. We show with the time series in the capi-
tal cities (Beijing, Seoul, and Tokyo) that the RF success-
fully captures the seasonality of PM2.5 even though AOD and
PM2.5 have different and often opposite seasonalities.

We examined the ability of the RF algorithm to map air
quality on urban scales by an analysis of two multi-day pol-
lution episodes in Seoul and Beijing. The algorithm captures
the day-to-day temporal variability observed by the surface
networks and the spatial variability on the 6× 6 km2 scale.
The highest PM2.5 concentrations are underpredicted, which
reflects the smoothing of the high tail of the distribution.

The continuous spatial coverage of PM2.5 provided by the
GOCI fields enables improved evaluation of the air quality
models used in support of emission control policies. A com-
parison to a CMAQ simulation for South Korea in 2015–
2019 reveals a large model underestimate in coastal environ-
ments undersampled by the AirKorea network. A compari-
son to a CMAQ simulation for North Korea in 2016, where
the RF provides the only PM2.5 data for model evaluation,
shows drastically different patterns, with the RF featuring
high PM2.5 throughout North Korea. The RF results in North
Korea could be affected by errors due to lack of training data
but they appear consistent with the PM2.5 network observa-
tions at Chinese border sites.

More work could be done to improve our GOCI PM2.5
product. We find, in our current RF algorithm, consistent
with Hu et al. (2017), that the addition of certain predic-
tor variables such as population decreases performance. This
motivated our practice of excluding spatially varying but
temporally constant fields such as elevation and emissions.
However, these variables have been found to be useful in
other inferences of PM2.5 from AOD data (Kloog et al.,
2012; Di et al., 2019), so further investigation is needed on
how to accommodate them in our modeling framework. A
higher-resolution meteorological reanalysis, such as ERA5-
Land (Muñoz-Sabater et al., 2021), could be used for the
meteorological predictor variables and enable the inclusion

of additional variables such as precipitation. Additional re-
mote sensing products such as Normalized Difference Vege-
tation Index (NDVI) could also be useful. More work needs
to be done to address our underestimate of the high tail of
the PM2.5 distribution, i.e., extreme pollution events. Such
an underestimate is common in RF applications (Zhang and
Lu, 2012) but could be addressed by leveraging specialized
statistical tools like extreme value theory. Additional training
methods could be used to improve the ability of the RF to
predict NAAQS exceedances, such as data sampling adjust-
ments. Moreover, it is possible that skill in modeling NAAQS
exceedance could be improved by leveraging data that better
capture diurnal variations of PM2.5, as high concentrations
tend to occur at night. The unique geostationary capability of
GOCI to generate hourly AOD data could be used to produce
an hourly PM2.5 product. A new GOCI AOD product with
2× 2 km2 resolution is expected to become available in the
near future and will provide the motivation to explore these
improvements in a new version of our RF algorithm.
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