Using machine learning to map fine
particulate matter air quality in East Asia
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Why care about fine particulate matter?
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A huge increase in spatial coverage ot PM, c is

possible if we use satellite data
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Linking satellite AOD to surface PM, ¢ is
challenging

Machine learning
Artificial neural networks
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Multi-linear regression

Chemical transport models




Our algorithm choice: random forest machine
learning method
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What makes the random forest random? And
why does it work?

Step 1: Draw a bootstrap sample with
replacement from the training data
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Step 2: Grow different decision trees for
each bootstrap sample

Each tree is trained recursively
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Splits at each phase in training
minimize error

Splits chosen are highly
sensitive to input data

Step 3: Average tree output to make
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Truth

Trees make a wide variety of guesses
but on average they are unbiased.

Averaging many trees should give an
accurate estimate.



Data sources for training algorithm

Target value y

Ground PM, . data
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Input vector x

Remote/reanalysis data

GOCI AOD and gap-
filling information

Daily column average used,
missing data removed

~ ECMWF

ERAS quarter degree products:

Relative humidity
Surface u/v wind

2m temperature

Sea level pressure
Boundary layer height
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Predicted PM, s (ug m~3)

Accuracy on both daily and annual resolution
compares favorably to the literature
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2015 PM, ; 2019 PM, ;
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Fine particulate
matter decreases
throughout South
Korea, but no
trend in Seoul
despite emissions
controls

PM, . trends, 2015-2019
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Conclusions

 Random forest accurate but has trouble predicting very low and
especially very high PM,  days

 Further work will be needed to increase resolution and reduce tail bias

* PM,  concentrations predicted by the RF algorithm for individual
countries show steady 2015-2019 declines consistent with surface

networks

* Further examination of RF results for South Korea shows general
2015-2019 PM, : decreases across South Korea except for flat
concentrations in Seoul



\;.»

q.‘lP‘RD UNIVE
'?s

o 103 150 {ES)
-

sp )
o :amc CHE“‘
LING GR°




